E-IOTA:一种高效、快速的IOTA变质作用

Gewu Bu, Wassim Hana, M. Potop-Butucaru
{"title":"E-IOTA:一种高效、快速的IOTA变质作用","authors":"Gewu Bu, Wassim Hana, M. Potop-Butucaru","doi":"10.1109/BRAINS49436.2020.9223294","DOIUrl":null,"url":null,"abstract":"IOTA opened recently a new line of research in distributed ledgers area by targeting algorithms that ensure a high throughput for the transactions generated in IoT systems. Transactions are continuously appended to an acyclic structure called Tangle. Each new transaction selects and approves, as parents, two existing transactions who have not been approved yet (called Tips). Recent research indicates that, IOTA suffers from a Fairness Problem, where a part of submitted transactions might not be approved by new coming transactions. They are called Left-Behind transactions. Recently, G-IOTA has been proposed: by using the Left-Behind Protection mechanism, G-IOTA can fix the fairness problem. G-IOTA, however, needs additional computation resources for left-behind protection mechanism, which is not suitable for an energy-aware IoT system. Furthermore, both IOTA and G-IOTA suffer from a potential security defect. This side effect reduces the Unpredictability when transactions are appended to the tangle. Leaking the unpredictability, an adversary can easily induce the tendency of transactions appending to the tangle. This approach is called Prediction Attack. In this paper, we propose E-IOTA to solve the fairness problem and at the same time, guarantee the unpredictability of the tangle. Interestingly, our real scenario simulation shows that E-IOTA offers better performance efficiency compared to G-IOTA and even original IOTA. Simultaneously, E-IOTA retains the core data structure of IOTA, which makes E-IOTA be compatible with current IOTA implementation. Our solution can therefore be a perfect alternative solution for current IOTA.","PeriodicalId":315392,"journal":{"name":"2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"E-IOTA: an efficient and fast metamorphism for IOTA\",\"authors\":\"Gewu Bu, Wassim Hana, M. Potop-Butucaru\",\"doi\":\"10.1109/BRAINS49436.2020.9223294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IOTA opened recently a new line of research in distributed ledgers area by targeting algorithms that ensure a high throughput for the transactions generated in IoT systems. Transactions are continuously appended to an acyclic structure called Tangle. Each new transaction selects and approves, as parents, two existing transactions who have not been approved yet (called Tips). Recent research indicates that, IOTA suffers from a Fairness Problem, where a part of submitted transactions might not be approved by new coming transactions. They are called Left-Behind transactions. Recently, G-IOTA has been proposed: by using the Left-Behind Protection mechanism, G-IOTA can fix the fairness problem. G-IOTA, however, needs additional computation resources for left-behind protection mechanism, which is not suitable for an energy-aware IoT system. Furthermore, both IOTA and G-IOTA suffer from a potential security defect. This side effect reduces the Unpredictability when transactions are appended to the tangle. Leaking the unpredictability, an adversary can easily induce the tendency of transactions appending to the tangle. This approach is called Prediction Attack. In this paper, we propose E-IOTA to solve the fairness problem and at the same time, guarantee the unpredictability of the tangle. Interestingly, our real scenario simulation shows that E-IOTA offers better performance efficiency compared to G-IOTA and even original IOTA. Simultaneously, E-IOTA retains the core data structure of IOTA, which makes E-IOTA be compatible with current IOTA implementation. Our solution can therefore be a perfect alternative solution for current IOTA.\",\"PeriodicalId\":315392,\"journal\":{\"name\":\"2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRAINS49436.2020.9223294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRAINS49436.2020.9223294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

IOTA最近在分布式账本领域开辟了一条新的研究路线,其目标是确保物联网系统中产生的交易的高吞吐量的算法。事务被不断地附加到一个称为Tangle的无循环结构中。每个新事务选择并批准两个尚未批准的现有事务(称为Tips)作为父事务。最近的研究表明,IOTA存在公平性问题,其中一部分提交的交易可能不会被新的交易批准。它们被称为“遗留事务”。最近,G-IOTA被提出:通过使用留守保护机制,G-IOTA可以解决公平性问题。然而,G-IOTA需要额外的计算资源来进行留守保护机制,这并不适合能源感知的物联网系统。此外,IOTA和G-IOTA都存在潜在的安全缺陷。当事务被附加到纠缠时,这种副作用减少了不可预测性。泄露了不可预测性,对手可以很容易地诱导交易附加到纠缠中。这种方法被称为预测攻击。在本文中,我们提出E-IOTA来解决公平性问题,同时保证缠结的不可预测性。有趣的是,我们的真实场景模拟表明,与G-IOTA甚至原始IOTA相比,E-IOTA提供了更好的性能效率。同时,E-IOTA保留了IOTA的核心数据结构,这使得E-IOTA与当前的IOTA实现兼容。因此,我们的解决方案可以成为当前IOTA的完美替代解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-IOTA: an efficient and fast metamorphism for IOTA
IOTA opened recently a new line of research in distributed ledgers area by targeting algorithms that ensure a high throughput for the transactions generated in IoT systems. Transactions are continuously appended to an acyclic structure called Tangle. Each new transaction selects and approves, as parents, two existing transactions who have not been approved yet (called Tips). Recent research indicates that, IOTA suffers from a Fairness Problem, where a part of submitted transactions might not be approved by new coming transactions. They are called Left-Behind transactions. Recently, G-IOTA has been proposed: by using the Left-Behind Protection mechanism, G-IOTA can fix the fairness problem. G-IOTA, however, needs additional computation resources for left-behind protection mechanism, which is not suitable for an energy-aware IoT system. Furthermore, both IOTA and G-IOTA suffer from a potential security defect. This side effect reduces the Unpredictability when transactions are appended to the tangle. Leaking the unpredictability, an adversary can easily induce the tendency of transactions appending to the tangle. This approach is called Prediction Attack. In this paper, we propose E-IOTA to solve the fairness problem and at the same time, guarantee the unpredictability of the tangle. Interestingly, our real scenario simulation shows that E-IOTA offers better performance efficiency compared to G-IOTA and even original IOTA. Simultaneously, E-IOTA retains the core data structure of IOTA, which makes E-IOTA be compatible with current IOTA implementation. Our solution can therefore be a perfect alternative solution for current IOTA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信