一种新的基于最小二乘的从稀疏表示估计的光谱中选择光谱峰的方法

Adel Zahedi, M. Kahaei
{"title":"一种新的基于最小二乘的从稀疏表示估计的光谱中选择光谱峰的方法","authors":"Adel Zahedi, M. Kahaei","doi":"10.1109/ISTEL.2010.5734108","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for selection of spectral peaks is proposed, when the spectrum is estimated based on sparse representation. The proposed method fits the spectral peaks to the available data using least squares fitting, and then computes the remaining signal. If the remaining signal contains noise only, then all the spectral peaks are detected. Computer simulations verify that the proposed method is comparable to the case where the number of spectral peaks is known.","PeriodicalId":306663,"journal":{"name":"2010 5th International Symposium on Telecommunications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new least-squares based method for selection of spectral peaks from the spectrum estimated by sparse representation\",\"authors\":\"Adel Zahedi, M. Kahaei\",\"doi\":\"10.1109/ISTEL.2010.5734108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method for selection of spectral peaks is proposed, when the spectrum is estimated based on sparse representation. The proposed method fits the spectral peaks to the available data using least squares fitting, and then computes the remaining signal. If the remaining signal contains noise only, then all the spectral peaks are detected. Computer simulations verify that the proposed method is comparable to the case where the number of spectral peaks is known.\",\"PeriodicalId\":306663,\"journal\":{\"name\":\"2010 5th International Symposium on Telecommunications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2010.5734108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2010.5734108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于稀疏表示的谱估计中谱峰选择的新方法。该方法利用最小二乘拟合的方法,将谱峰与现有数据进行拟合,然后计算剩余信号。如果剩余的信号只包含噪声,则检测到所有的谱峰。计算机模拟结果表明,该方法与已知谱峰数的情况具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new least-squares based method for selection of spectral peaks from the spectrum estimated by sparse representation
In this paper, a new method for selection of spectral peaks is proposed, when the spectrum is estimated based on sparse representation. The proposed method fits the spectral peaks to the available data using least squares fitting, and then computes the remaining signal. If the remaining signal contains noise only, then all the spectral peaks are detected. Computer simulations verify that the proposed method is comparable to the case where the number of spectral peaks is known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信