基于粒子群算法的汽轮发电机组负荷分配优化

Yan Tao, Xu Jiatian, J. Weiguo
{"title":"基于粒子群算法的汽轮发电机组负荷分配优化","authors":"Yan Tao, Xu Jiatian, J. Weiguo","doi":"10.1109/ICICTA.2011.11","DOIUrl":null,"url":null,"abstract":"In concern with the slow-convergence disadvantage of GA, PSO is combined with GA in this paper for a load distribution optimization among turbine-generators. By comparison with GA method, it is shown that PSO-GA is better than the GA method in the aspect of calculation speed, bearing excellent stability and fast convergence.","PeriodicalId":368130,"journal":{"name":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Load Distribution Optimization among Turbine-generators Based on PSO-GA\",\"authors\":\"Yan Tao, Xu Jiatian, J. Weiguo\",\"doi\":\"10.1109/ICICTA.2011.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In concern with the slow-convergence disadvantage of GA, PSO is combined with GA in this paper for a load distribution optimization among turbine-generators. By comparison with GA method, it is shown that PSO-GA is better than the GA method in the aspect of calculation speed, bearing excellent stability and fast convergence.\",\"PeriodicalId\":368130,\"journal\":{\"name\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2011.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对遗传算法收敛速度慢的缺点,本文将粒子群算法与遗传算法相结合,用于汽轮发电机组间负荷分配优化。通过与遗传算法的比较,表明PSO-GA算法在计算速度快、稳定性好、收敛速度快等方面优于遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Load Distribution Optimization among Turbine-generators Based on PSO-GA
In concern with the slow-convergence disadvantage of GA, PSO is combined with GA in this paper for a load distribution optimization among turbine-generators. By comparison with GA method, it is shown that PSO-GA is better than the GA method in the aspect of calculation speed, bearing excellent stability and fast convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信