使用视觉注意模型的视频摘要

Sophie Marat, M. Guironnet, D. Pellerin
{"title":"使用视觉注意模型的视频摘要","authors":"Sophie Marat, M. Guironnet, D. Pellerin","doi":"10.5281/ZENODO.40569","DOIUrl":null,"url":null,"abstract":"This paper presents a method of video summarization based on a visual attention model. The visual attention model is a bottom-up one composed of two parallel ways. A static way, biologically inspired, which highlights salient objects. A dynamic way which gives information about moving objects. A three steps summary method is then presented. The first step is the choice between the two kinds (static and dynamic) of saliency maps given by the attention model. The second step is the selection of keyframes. An “attention variation curve” which highlights changes on frames content during the video is introduced. Keyframes are selected on this variation attention curve. To evaluate the summary a reference summary is built and a comparison method is proposed. The results provide a quantitative analysis and show the efficiency of the video summarization method.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Video summarization using a visual attention model\",\"authors\":\"Sophie Marat, M. Guironnet, D. Pellerin\",\"doi\":\"10.5281/ZENODO.40569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of video summarization based on a visual attention model. The visual attention model is a bottom-up one composed of two parallel ways. A static way, biologically inspired, which highlights salient objects. A dynamic way which gives information about moving objects. A three steps summary method is then presented. The first step is the choice between the two kinds (static and dynamic) of saliency maps given by the attention model. The second step is the selection of keyframes. An “attention variation curve” which highlights changes on frames content during the video is introduced. Keyframes are selected on this variation attention curve. To evaluate the summary a reference summary is built and a comparison method is proposed. The results provide a quantitative analysis and show the efficiency of the video summarization method.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

提出了一种基于视觉注意模型的视频摘要方法。视觉注意模型是由两种平行方式组成的自下而上的模型。一种静态的方式,受生物启发,突出突出的物体。给出运动物体信息的一种动态方式。提出了一种三步总结法。第一步是在注意模型给出的两种(静态和动态)显著性图之间进行选择。第二步是关键帧的选择。引入了一种“注意力变化曲线”来突出显示视频中帧内容的变化。关键帧选择在这个变化的注意力曲线上。为了对摘要进行评价,建立了一个参考摘要,并提出了一种比较方法。实验结果为视频摘要方法的有效性提供了定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video summarization using a visual attention model
This paper presents a method of video summarization based on a visual attention model. The visual attention model is a bottom-up one composed of two parallel ways. A static way, biologically inspired, which highlights salient objects. A dynamic way which gives information about moving objects. A three steps summary method is then presented. The first step is the choice between the two kinds (static and dynamic) of saliency maps given by the attention model. The second step is the selection of keyframes. An “attention variation curve” which highlights changes on frames content during the video is introduced. Keyframes are selected on this variation attention curve. To evaluate the summary a reference summary is built and a comparison method is proposed. The results provide a quantitative analysis and show the efficiency of the video summarization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信