基于机器学习的SDN DDoS攻击检测与防御

Tan-Khang Luong, Trung-Dung Tran, Giang-Thanh Le
{"title":"基于机器学习的SDN DDoS攻击检测与防御","authors":"Tan-Khang Luong, Trung-Dung Tran, Giang-Thanh Le","doi":"10.1109/NICS51282.2020.9335867","DOIUrl":null,"url":null,"abstract":"Distributed Denial of Service (DDoS) attack is one of the most dangerous threats in computer networks. Hence, DDoS attack detection is one of the key defense mechanisms. In this paper, we propose a DDoS detection and defense approach in Software Defined Network (SDN) systems based on machine learning (ML) and deep neural network (DNN) models. The combination of ML and DNN classifiers with the centralized factors of SDN can efficiently mitigate the harmful effect of DDoS to the network system. Besides, we conducted two types of attack scenarios, one is from inside and one is from outside of the network system.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DDoS attack detection and defense in SDN based on machine learning\",\"authors\":\"Tan-Khang Luong, Trung-Dung Tran, Giang-Thanh Le\",\"doi\":\"10.1109/NICS51282.2020.9335867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Denial of Service (DDoS) attack is one of the most dangerous threats in computer networks. Hence, DDoS attack detection is one of the key defense mechanisms. In this paper, we propose a DDoS detection and defense approach in Software Defined Network (SDN) systems based on machine learning (ML) and deep neural network (DNN) models. The combination of ML and DNN classifiers with the centralized factors of SDN can efficiently mitigate the harmful effect of DDoS to the network system. Besides, we conducted two types of attack scenarios, one is from inside and one is from outside of the network system.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分布式拒绝服务(DDoS)攻击是计算机网络中最危险的威胁之一。因此,DDoS攻击检测是关键的防御机制之一。在本文中,我们提出了一种基于机器学习(ML)和深度神经网络(DNN)模型的软件定义网络(SDN)系统中的DDoS检测和防御方法。ML和DNN分类器结合SDN的集中因素,可以有效缓解DDoS对网络系统的有害影响。此外,我们进行了两种攻击场景,一种是来自网络系统内部,一种是来自网络系统外部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDoS attack detection and defense in SDN based on machine learning
Distributed Denial of Service (DDoS) attack is one of the most dangerous threats in computer networks. Hence, DDoS attack detection is one of the key defense mechanisms. In this paper, we propose a DDoS detection and defense approach in Software Defined Network (SDN) systems based on machine learning (ML) and deep neural network (DNN) models. The combination of ML and DNN classifiers with the centralized factors of SDN can efficiently mitigate the harmful effect of DDoS to the network system. Besides, we conducted two types of attack scenarios, one is from inside and one is from outside of the network system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信