去噪在线边缘粗糙度估计不确定性量化中的应用

Inimfon I. Akpabio, S. Savari
{"title":"去噪在线边缘粗糙度估计不确定性量化中的应用","authors":"Inimfon I. Akpabio, S. Savari","doi":"10.1109/asmc54647.2022.9792521","DOIUrl":null,"url":null,"abstract":"Prediction intervals which describe the reliability of the predictive performance of regression models are useful to influence decision making and to build trust in machine learning. Normalized conformal prediction is a rigorous and simple guideline to construct prediction intervals which has no distributional assumptions but requires other types of modeling to assess a regression model fit to training data, and quantile regression is a widely used technique in other fields to construct prediction intervals. We propose image denoising and other image processing techniques as a foundation to prediction interval construction procedures for line edge roughness (LER) estimation from noisy scanning electron microscope (SEM) images and show that these innovations offer significant improvements in efficiency over earlier approaches used to study the deep convolutional neural network EDGENet.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On an Application of Denoising to the Uncertainty Quantification of Line Edge Roughness Estimation\",\"authors\":\"Inimfon I. Akpabio, S. Savari\",\"doi\":\"10.1109/asmc54647.2022.9792521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction intervals which describe the reliability of the predictive performance of regression models are useful to influence decision making and to build trust in machine learning. Normalized conformal prediction is a rigorous and simple guideline to construct prediction intervals which has no distributional assumptions but requires other types of modeling to assess a regression model fit to training data, and quantile regression is a widely used technique in other fields to construct prediction intervals. We propose image denoising and other image processing techniques as a foundation to prediction interval construction procedures for line edge roughness (LER) estimation from noisy scanning electron microscope (SEM) images and show that these innovations offer significant improvements in efficiency over earlier approaches used to study the deep convolutional neural network EDGENet.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

描述回归模型预测性能可靠性的预测区间对于影响决策和在机器学习中建立信任非常有用。归一化保形预测是构建预测区间的一种严格而简单的方法,它没有分布假设,但需要其他类型的建模来评估回归模型与训练数据的拟合,分位数回归是其他领域广泛使用的构建预测区间的技术。我们提出了图像去噪和其他图像处理技术,作为从噪声扫描电子显微镜(SEM)图像中估计线边缘粗糙度(LER)的预测区间构建过程的基础,并表明这些创新比用于研究深度卷积神经网络EDGENet的早期方法在效率上有显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an Application of Denoising to the Uncertainty Quantification of Line Edge Roughness Estimation
Prediction intervals which describe the reliability of the predictive performance of regression models are useful to influence decision making and to build trust in machine learning. Normalized conformal prediction is a rigorous and simple guideline to construct prediction intervals which has no distributional assumptions but requires other types of modeling to assess a regression model fit to training data, and quantile regression is a widely used technique in other fields to construct prediction intervals. We propose image denoising and other image processing techniques as a foundation to prediction interval construction procedures for line edge roughness (LER) estimation from noisy scanning electron microscope (SEM) images and show that these innovations offer significant improvements in efficiency over earlier approaches used to study the deep convolutional neural network EDGENet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信