资源受限环境下基于激光雷达感知的cnn剪枝

M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele
{"title":"资源受限环境下基于激光雷达感知的cnn剪枝","authors":"M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele","doi":"10.1109/ivworkshops54471.2021.9669256","DOIUrl":null,"url":null,"abstract":"Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pruning CNNs for LiDAR-based Perception in Resource Constrained Environments\",\"authors\":\"M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele\",\"doi\":\"10.1109/ivworkshops54471.2021.9669256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.\",\"PeriodicalId\":256905,\"journal\":{\"name\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ivworkshops54471.2021.9669256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度神经网络提供了较高的感知精度。然而,它们需要很高的计算能力。特别是,基于激光雷达的目标检测具有良好的准确性和实时性,但由于编码器和骨干网络中点云数据的特征提取成本高,因此需要高计算量。我们使用基于强化学习的PointPillars剪枝来研究模型复杂性与精度之间的权衡,PointPillars是一种最新的基于激光雷达的3D物体检测网络。我们根据汽车类别的平均精度(mAP)在KITTI (80/20- splitting)验证数据集上评估模型。我们对原始的PointPillars模型(mAP 89.84)进行了修剪,在边际精度损失的情况下,浮点运算(FLOPs)减少了65.8%。压缩对应于在GTX 1080 Ti上减少31.7%的推理时间和35%的GPU内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pruning CNNs for LiDAR-based Perception in Resource Constrained Environments
Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信