M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele
{"title":"资源受限环境下基于激光雷达感知的cnn剪枝","authors":"M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele","doi":"10.1109/ivworkshops54471.2021.9669256","DOIUrl":null,"url":null,"abstract":"Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pruning CNNs for LiDAR-based Perception in Resource Constrained Environments\",\"authors\":\"M. Vemparala, Anmol Singh, Ahmed Mzid, Nael Fasfous, Alexander Frickenstein, Florian Mirus, Hans-Joerg Voegel, N. Nagaraja, W. Stechele\",\"doi\":\"10.1109/ivworkshops54471.2021.9669256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.\",\"PeriodicalId\":256905,\"journal\":{\"name\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ivworkshops54471.2021.9669256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pruning CNNs for LiDAR-based Perception in Resource Constrained Environments
Deep neural networks provide high accuracy for perception. However they require high computational power. In particular, LiDAR-based object detection delivers good accuracy and real-time performance, but demands high computation due to expensive feature-extraction from point cloud data in the encoder and backbone networks. We investigate the model complexity versus accuracy trade-off using reinforcement learning based pruning for PointPillars, a recent LiDAR-based 3D object detection network. We evaluate the model on the validation dataset of KITTI (80/20-splits) according to the mean average precision (mAP) for the car class. We prune the original PointPillars model (mAP 89.84) and achieve 65.8% reduction in floating point operations (FLOPs) for a marginal accuracy loss. The compression corresponds to 31.7% reduction in inference time and 35% reduction in GPU memory on GTX 1080 Ti.