K. Sujatha, R. S. Ponmagal, T. Godhavari, K. Kumar
{"title":"利用人工神经网络和物联网实现太阳能系统最大功率点跟踪的自动化","authors":"K. Sujatha, R. S. Ponmagal, T. Godhavari, K. Kumar","doi":"10.1109/UPCON.2016.7894625","DOIUrl":null,"url":null,"abstract":"The importance of this project focuses on the efficiency of the solar panel which can be increased by incorporating indigenous solar tracking systems in order to increase solar panel efficiency. However, implementation of this technology requires accurate control which is crucial to develop a refined tracking system. In this work, a solar tracking system using Artificial Neural Network (ANN) based Image Processing (IPT) Techniques to estimate the azimuth angle of the sun from Global Positioning System (GPS) and image sensor is proposed here. The features extracted using IP algorithms with a decision making AI process is adopted to differentiate whether the present weather condition is sunny or cloudy. With reference to the results obtained, the solar tracking system establishes the usage of astronomical calculations approximately. The proposed hi-tech arrangement is evaluated and validated through experimentation results which are made available on the cloud service for coordination.","PeriodicalId":151809,"journal":{"name":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automation of solar system for Maximum Power Point tracking using Artificial Neural Networks and IoT\",\"authors\":\"K. Sujatha, R. S. Ponmagal, T. Godhavari, K. Kumar\",\"doi\":\"10.1109/UPCON.2016.7894625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of this project focuses on the efficiency of the solar panel which can be increased by incorporating indigenous solar tracking systems in order to increase solar panel efficiency. However, implementation of this technology requires accurate control which is crucial to develop a refined tracking system. In this work, a solar tracking system using Artificial Neural Network (ANN) based Image Processing (IPT) Techniques to estimate the azimuth angle of the sun from Global Positioning System (GPS) and image sensor is proposed here. The features extracted using IP algorithms with a decision making AI process is adopted to differentiate whether the present weather condition is sunny or cloudy. With reference to the results obtained, the solar tracking system establishes the usage of astronomical calculations approximately. The proposed hi-tech arrangement is evaluated and validated through experimentation results which are made available on the cloud service for coordination.\",\"PeriodicalId\":151809,\"journal\":{\"name\":\"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPCON.2016.7894625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON.2016.7894625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automation of solar system for Maximum Power Point tracking using Artificial Neural Networks and IoT
The importance of this project focuses on the efficiency of the solar panel which can be increased by incorporating indigenous solar tracking systems in order to increase solar panel efficiency. However, implementation of this technology requires accurate control which is crucial to develop a refined tracking system. In this work, a solar tracking system using Artificial Neural Network (ANN) based Image Processing (IPT) Techniques to estimate the azimuth angle of the sun from Global Positioning System (GPS) and image sensor is proposed here. The features extracted using IP algorithms with a decision making AI process is adopted to differentiate whether the present weather condition is sunny or cloudy. With reference to the results obtained, the solar tracking system establishes the usage of astronomical calculations approximately. The proposed hi-tech arrangement is evaluated and validated through experimentation results which are made available on the cloud service for coordination.