A. H. Gholamipour, Kyprianos Papademetriou, F. Kurdahi, A. Dollas, A. Eltawil
{"title":"设计可靠多模FIR滤波器时的面积、重构延迟和可靠性权衡","authors":"A. H. Gholamipour, Kyprianos Papademetriou, F. Kurdahi, A. Dollas, A. Eltawil","doi":"10.1109/IDT.2011.6123107","DOIUrl":null,"url":null,"abstract":"Wide range of digital systems from wireless devices to multi-media terminals are characterized by their multi-mode behavior. Many of these systems are deployed in high-radiation environments [5]. SRAM-based FPGAs are popular platforms to implement multi-mode systems, because of their high performance and reconfigurability. However, high susceptibility of FPGAs toward Soft Errors makes them less-than-reliable platforms. To overcome the reliability issue, various redundancy techniques have been proposed. These techniques exhibit different design and reliability characteristics. Considering the combined effect of design decisions and reliability techniques on system characteristics a coherent strategy should be devised to meet system requirements and constraints. In this work we propose a method to explore the design space for implementing a reliable multi-mode system. As we will show, different selections of design parameters and redundancy techniques generate a range of solutions which trade-off total area, reconfiguration overhead and reliability of the system. The choice of a specific solution remains a decision made by the system-designer.","PeriodicalId":167786,"journal":{"name":"2011 IEEE 6th International Design and Test Workshop (IDT)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Area, reconfiguration delay and reliability trade-offs in designing reliable multi-mode FIR filters\",\"authors\":\"A. H. Gholamipour, Kyprianos Papademetriou, F. Kurdahi, A. Dollas, A. Eltawil\",\"doi\":\"10.1109/IDT.2011.6123107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide range of digital systems from wireless devices to multi-media terminals are characterized by their multi-mode behavior. Many of these systems are deployed in high-radiation environments [5]. SRAM-based FPGAs are popular platforms to implement multi-mode systems, because of their high performance and reconfigurability. However, high susceptibility of FPGAs toward Soft Errors makes them less-than-reliable platforms. To overcome the reliability issue, various redundancy techniques have been proposed. These techniques exhibit different design and reliability characteristics. Considering the combined effect of design decisions and reliability techniques on system characteristics a coherent strategy should be devised to meet system requirements and constraints. In this work we propose a method to explore the design space for implementing a reliable multi-mode system. As we will show, different selections of design parameters and redundancy techniques generate a range of solutions which trade-off total area, reconfiguration overhead and reliability of the system. The choice of a specific solution remains a decision made by the system-designer.\",\"PeriodicalId\":167786,\"journal\":{\"name\":\"2011 IEEE 6th International Design and Test Workshop (IDT)\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 6th International Design and Test Workshop (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2011.6123107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 6th International Design and Test Workshop (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2011.6123107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Area, reconfiguration delay and reliability trade-offs in designing reliable multi-mode FIR filters
Wide range of digital systems from wireless devices to multi-media terminals are characterized by their multi-mode behavior. Many of these systems are deployed in high-radiation environments [5]. SRAM-based FPGAs are popular platforms to implement multi-mode systems, because of their high performance and reconfigurability. However, high susceptibility of FPGAs toward Soft Errors makes them less-than-reliable platforms. To overcome the reliability issue, various redundancy techniques have been proposed. These techniques exhibit different design and reliability characteristics. Considering the combined effect of design decisions and reliability techniques on system characteristics a coherent strategy should be devised to meet system requirements and constraints. In this work we propose a method to explore the design space for implementing a reliable multi-mode system. As we will show, different selections of design parameters and redundancy techniques generate a range of solutions which trade-off total area, reconfiguration overhead and reliability of the system. The choice of a specific solution remains a decision made by the system-designer.