准确、高效地计算参数良率

L. Milor, A. Sangiovanni-Vincentelli
{"title":"准确、高效地计算参数良率","authors":"L. Milor, A. Sangiovanni-Vincentelli","doi":"10.1109/ICCAD.1990.129856","DOIUrl":null,"url":null,"abstract":"An algorithm for computing parametric yield is presented. The algorithm uses statistical modeling techniques and takes advantage of incremental knowledge of the problem to reduce significantly the number of simulations needed. Polynomial regression is used to construct simple equations mapping parameters to measurements. These simple polynomial equations can then replace circuit simulations in the Monte Carlo algorithm for computing parametric yield. The algorithm differs from previous statistical modeling algorithms using polynomial regression for three major reasons: first, the random error that is postulated in polynomial regression equations is taken into account when computing parametric yield; second, the variance of the yield is computed; and third, the algorithm is fully automated. Therefore a direct comparison with Monte Carlo methods can be made. Examples indicate that significant speed-ups can be attained over Monte Carlo methods for a large class of problems.<<ETX>>","PeriodicalId":242666,"journal":{"name":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Computing parametric yield accurately and efficiently\",\"authors\":\"L. Milor, A. Sangiovanni-Vincentelli\",\"doi\":\"10.1109/ICCAD.1990.129856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for computing parametric yield is presented. The algorithm uses statistical modeling techniques and takes advantage of incremental knowledge of the problem to reduce significantly the number of simulations needed. Polynomial regression is used to construct simple equations mapping parameters to measurements. These simple polynomial equations can then replace circuit simulations in the Monte Carlo algorithm for computing parametric yield. The algorithm differs from previous statistical modeling algorithms using polynomial regression for three major reasons: first, the random error that is postulated in polynomial regression equations is taken into account when computing parametric yield; second, the variance of the yield is computed; and third, the algorithm is fully automated. Therefore a direct comparison with Monte Carlo methods can be made. Examples indicate that significant speed-ups can be attained over Monte Carlo methods for a large class of problems.<<ETX>>\",\"PeriodicalId\":242666,\"journal\":{\"name\":\"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1990.129856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1990.129856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

提出了一种计算参数良率的算法。该算法使用统计建模技术,并利用问题的增量知识来显著减少所需的模拟次数。多项式回归用于构造简单的方程,将参数映射到测量值。这些简单的多项式方程可以代替蒙特卡罗算法中的电路模拟来计算参数产率。该算法与以往使用多项式回归的统计建模算法的不同之处在于:首先,在计算参数产量时考虑了多项式回归方程中假设的随机误差;其次,计算收益率的方差;第三,算法是完全自动化的。因此,可以与蒙特卡罗方法进行直接比较。实例表明,对于大量的问题,蒙特卡罗方法可以获得显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing parametric yield accurately and efficiently
An algorithm for computing parametric yield is presented. The algorithm uses statistical modeling techniques and takes advantage of incremental knowledge of the problem to reduce significantly the number of simulations needed. Polynomial regression is used to construct simple equations mapping parameters to measurements. These simple polynomial equations can then replace circuit simulations in the Monte Carlo algorithm for computing parametric yield. The algorithm differs from previous statistical modeling algorithms using polynomial regression for three major reasons: first, the random error that is postulated in polynomial regression equations is taken into account when computing parametric yield; second, the variance of the yield is computed; and third, the algorithm is fully automated. Therefore a direct comparison with Monte Carlo methods can be made. Examples indicate that significant speed-ups can be attained over Monte Carlo methods for a large class of problems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信