{"title":"常系数奇异积分算子和倒移算子的本质范数","authors":"Oleksiy Karlovych, E. Shargorodsky","doi":"10.1090/bproc/118","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a rearrangement-invariant Banach function space on the unit circle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-bracket upper X right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H[X]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the abstract Hardy space built upon <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We prove that if the Cauchy singular integral operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper H f right-parenthesis left-parenthesis t right-parenthesis equals StartFraction 1 Over pi i EndFraction integral Underscript double-struck upper T Endscripts StartFraction f left-parenthesis tau right-parenthesis Over tau minus t EndFraction d tau\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>H</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:mfrac>\n <mml:msub>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n </mml:mfrac>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>d</mml:mi>\n <mml:mi>τ<!-- τ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(Hf)(t)=\\frac {1}{\\pi i}\\int _{\\mathbb {T}}\\frac {f(\\tau )}{\\tau -t}\\,d\\tau</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bounded on the space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the norm, the essential norm, and the Hausdorff measure of non-compactness of the operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a upper I plus b upper H\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mi>I</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mi>H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">aI+bH</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a comma b element-of double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a,b\\in \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, acting on the space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, coincide. We also show that similar equalities hold for the backward shift operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper S f right-parenthesis left-parenthesis t right-parenthesis equals left-parenthesis f left-parenthesis t right-parenthesis minus ModifyingAbove f With caret left-parenthesis 0 right-parenthesis right-parenthesis slash t\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>S</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(Sf)(t)=(f(t)-\\widehat {f}(0))/t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the abstract Hardy space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-bracket upper X right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H[X]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our results extend those by Krupnik and Polonskiĭ [Funkcional. Anal. i Priloz̆en. 9 (1975), pp. 73-74] for the operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a upper I plus b upper H\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mi>I</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mi>H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">aI+bH</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and by the second author [J. Funct. Anal. 280 (2021), p. 11] for the operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the essential norms of singular integral operators with constant coefficients and of the backward shift\",\"authors\":\"Oleksiy Karlovych, E. Shargorodsky\",\"doi\":\"10.1090/bproc/118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a rearrangement-invariant Banach function space on the unit circle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper T\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {T}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H left-bracket upper X right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H[X]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be the abstract Hardy space built upon <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We prove that if the Cauchy singular integral operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper H f right-parenthesis left-parenthesis t right-parenthesis equals StartFraction 1 Over pi i EndFraction integral Underscript double-struck upper T Endscripts StartFraction f left-parenthesis tau right-parenthesis Over tau minus t EndFraction d tau\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>H</mml:mi>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mi>π<!-- π --></mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:msub>\\n <mml:mo>∫<!-- ∫ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mi>d</mml:mi>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(Hf)(t)=\\\\frac {1}{\\\\pi i}\\\\int _{\\\\mathbb {T}}\\\\frac {f(\\\\tau )}{\\\\tau -t}\\\\,d\\\\tau</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is bounded on the space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then the norm, the essential norm, and the Hausdorff measure of non-compactness of the operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a upper I plus b upper H\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mi>I</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>b</mml:mi>\\n <mml:mi>H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">aI+bH</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a comma b element-of double-struck upper C\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">a,b\\\\in \\\\mathbb {C}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, acting on the space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, coincide. We also show that similar equalities hold for the backward shift operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis upper S f right-parenthesis left-parenthesis t right-parenthesis equals left-parenthesis f left-parenthesis t right-parenthesis minus ModifyingAbove f With caret left-parenthesis 0 right-parenthesis right-parenthesis slash t\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>S</mml:mi>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>f</mml:mi>\\n <mml:mo>^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(Sf)(t)=(f(t)-\\\\widehat {f}(0))/t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the abstract Hardy space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H left-bracket upper X right-bracket\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>H</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H[X]</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our results extend those by Krupnik and Polonskiĭ [Funkcional. Anal. i Priloz̆en. 9 (1975), pp. 73-74] for the operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a upper I plus b upper H\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>a</mml:mi>\\n <mml:mi>I</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>b</mml:mi>\\n <mml:mi>H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">aI+bH</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and by the second author [J. Funct. Anal. 280 (2021), p. 11] for the operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\">\\n <mml:semantics>\\n <mml:mi>S</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the essential norms of singular integral operators with constant coefficients and of the backward shift
Let XX be a rearrangement-invariant Banach function space on the unit circle T\mathbb {T} and let H[X]H[X] be the abstract Hardy space built upon XX. We prove that if the Cauchy singular integral operator (Hf)(t)=1πi∫Tf(τ)τ−tdτ(Hf)(t)=\frac {1}{\pi i}\int _{\mathbb {T}}\frac {f(\tau )}{\tau -t}\,d\tau is bounded on the space XX, then the norm, the essential norm, and the Hausdorff measure of non-compactness of the operator aI+bHaI+bH with a,b∈Ca,b\in \mathbb {C}, acting on the space XX, coincide. We also show that similar equalities hold for the backward shift operator (Sf)(t)=(f(t)−f^(0))/t(Sf)(t)=(f(t)-\widehat {f}(0))/t on the abstract Hardy space H[X]H[X]. Our results extend those by Krupnik and Polonskiĭ [Funkcional. Anal. i Priloz̆en. 9 (1975), pp. 73-74] for the operator aI+bHaI+bH and by the second author [J. Funct. Anal. 280 (2021), p. 11] for the operator SS.