将推荐系统与动态加权技术相结合

P. Henriques, João Mendes-Moreira
{"title":"将推荐系统与动态加权技术相结合","authors":"P. Henriques, João Mendes-Moreira","doi":"10.1109/ICDIM.2016.7829766","DOIUrl":null,"url":null,"abstract":"Recommender systems represent user preferences for items that the user might be interested to view or purchase. These systems have become extremely common in electronic commerce, providing relevant suggestions and directing users towards those items that best meet their needs and preferences. Different techniques have been analysed including content-based, collaborative and hybrid approaches. The last one is used to improve performance prediction combining different recommender systems using the best features of each method, smoothing problems as cold-start. We evaluate our ensemble method using MovieLens dataset with promising results.","PeriodicalId":146662,"journal":{"name":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining recommendation systems with a dynamic weighted technique\",\"authors\":\"P. Henriques, João Mendes-Moreira\",\"doi\":\"10.1109/ICDIM.2016.7829766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems represent user preferences for items that the user might be interested to view or purchase. These systems have become extremely common in electronic commerce, providing relevant suggestions and directing users towards those items that best meet their needs and preferences. Different techniques have been analysed including content-based, collaborative and hybrid approaches. The last one is used to improve performance prediction combining different recommender systems using the best features of each method, smoothing problems as cold-start. We evaluate our ensemble method using MovieLens dataset with promising results.\",\"PeriodicalId\":146662,\"journal\":{\"name\":\"2016 Eleventh International Conference on Digital Information Management (ICDIM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eleventh International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2016.7829766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2016.7829766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统表示用户对可能有兴趣查看或购买的物品的偏好。这些系统在电子商务中非常普遍,提供相关建议并引导用户购买最符合他们需要和偏好的商品。分析了不同的技术,包括基于内容的、协作的和混合的方法。最后一种方法是结合不同的推荐系统,利用每种方法的最佳特征来改进性能预测,平滑冷启动问题。我们使用MovieLens数据集评估了我们的集成方法,结果很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining recommendation systems with a dynamic weighted technique
Recommender systems represent user preferences for items that the user might be interested to view or purchase. These systems have become extremely common in electronic commerce, providing relevant suggestions and directing users towards those items that best meet their needs and preferences. Different techniques have been analysed including content-based, collaborative and hybrid approaches. The last one is used to improve performance prediction combining different recommender systems using the best features of each method, smoothing problems as cold-start. We evaluate our ensemble method using MovieLens dataset with promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信