基于频繁模式的道路网络轨迹时空压缩

Peng Zhao, Qinpei Zhao, Chenxi Zhang, Gong Su, Qi Zhang, Weixiong Rao
{"title":"基于频繁模式的道路网络轨迹时空压缩","authors":"Peng Zhao, Qinpei Zhao, Chenxi Zhang, Gong Su, Qi Zhang, Weixiong Rao","doi":"10.1109/MDM.2019.00127","DOIUrl":null,"url":null,"abstract":"The volume of trajectory data has become tremendously large in recent years. How to efficiently maintain and compute such trajectory data becomes a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road networks. By treating the mined patterns as dictionary items, we have the chance to encode a long trajectory by shorter paths, thus leading to smaller space cost. Meanwhile, we design an error-bounded temporal compression on top of the identified spatial patterns for much low space cost. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of both space saving and runtime of trajectory compression.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"28 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CLEAN: Frequent Pattern-Based Trajectory Spatial-Temporal Compression on Road Networks\",\"authors\":\"Peng Zhao, Qinpei Zhao, Chenxi Zhang, Gong Su, Qi Zhang, Weixiong Rao\",\"doi\":\"10.1109/MDM.2019.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of trajectory data has become tremendously large in recent years. How to efficiently maintain and compute such trajectory data becomes a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road networks. By treating the mined patterns as dictionary items, we have the chance to encode a long trajectory by shorter paths, thus leading to smaller space cost. Meanwhile, we design an error-bounded temporal compression on top of the identified spatial patterns for much low space cost. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of both space saving and runtime of trajectory compression.\",\"PeriodicalId\":241426,\"journal\":{\"name\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"28 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2019.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,轨迹数据的量变得非常大。如何有效地维护和计算这些轨迹数据成为一项具有挑战性的任务。本文提出了一个轨迹时空压缩框架,即CLEAN。空间压缩的关键是挖掘路网中有意义的轨迹频繁模式。通过将挖掘的模式视为字典项,我们有机会用较短的路径编码较长的轨迹,从而导致更小的空间成本。同时,我们在已识别的空间模式基础上设计了一种误差有界的时间压缩方法,以获得较低的空间成本。在真实轨迹数据集上的大量实验验证了CLEAN在节省空间和运行时间方面明显优于现有的最先进的轨迹压缩方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLEAN: Frequent Pattern-Based Trajectory Spatial-Temporal Compression on Road Networks
The volume of trajectory data has become tremendously large in recent years. How to efficiently maintain and compute such trajectory data becomes a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road networks. By treating the mined patterns as dictionary items, we have the chance to encode a long trajectory by shorter paths, thus leading to smaller space cost. Meanwhile, we design an error-bounded temporal compression on top of the identified spatial patterns for much low space cost. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of both space saving and runtime of trajectory compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信