模型阶数约简在电力电子模块线键结构可靠性预测中的应用

P. Rajaguru, M. Bella, C. Bailey
{"title":"模型阶数约简在电力电子模块线键结构可靠性预测中的应用","authors":"P. Rajaguru, M. Bella, C. Bailey","doi":"10.1109/THERMINIC52472.2021.9626396","DOIUrl":null,"url":null,"abstract":"Predicting the reliability of power electronics module wirebond structures requires accurate computer models to investigate the design space constraints in a computationally efficient manner. This paper details a model-order reduction (MOR) method to solve the governing equations for electro-thermal behaviour of wire-bond structures and a linear-damage rule and fatigue model to predict their wear-out behaviour. Various MOR methods are compared in terms of their accuracy and computational efficiency. Finite element calculations are used to validate the MOR predictions in terms of accuracy and solution times. The paper presents for the first time the significant benefits that MOR techniques can provide to reliability engineers for predicting the electro-thermal and fatigue behaviour of wirebonds in power modules. For the six MOR methods assessed, the Rational Krylov Algorithm (RKA) outperforms all other MOR methods in terms of accuracy and solution times, where it provides a solution 84 times faster than a full finite element solver.","PeriodicalId":302492,"journal":{"name":"2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying Model Order Reduction to the Reliability Prediction of Power Electronic Module Wirebond Structure\",\"authors\":\"P. Rajaguru, M. Bella, C. Bailey\",\"doi\":\"10.1109/THERMINIC52472.2021.9626396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the reliability of power electronics module wirebond structures requires accurate computer models to investigate the design space constraints in a computationally efficient manner. This paper details a model-order reduction (MOR) method to solve the governing equations for electro-thermal behaviour of wire-bond structures and a linear-damage rule and fatigue model to predict their wear-out behaviour. Various MOR methods are compared in terms of their accuracy and computational efficiency. Finite element calculations are used to validate the MOR predictions in terms of accuracy and solution times. The paper presents for the first time the significant benefits that MOR techniques can provide to reliability engineers for predicting the electro-thermal and fatigue behaviour of wirebonds in power modules. For the six MOR methods assessed, the Rational Krylov Algorithm (RKA) outperforms all other MOR methods in terms of accuracy and solution times, where it provides a solution 84 times faster than a full finite element solver.\",\"PeriodicalId\":302492,\"journal\":{\"name\":\"2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC52472.2021.9626396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC52472.2021.9626396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预测电力电子模块线键结构的可靠性需要精确的计算机模型,以高效的计算方式研究设计空间约束。本文详细介绍了一种用于求解线键结构电热行为控制方程的模型阶降阶方法,以及用于预测其磨损行为的线性损伤规则和疲劳模型。比较了各种MOR方法的精度和计算效率。有限元计算用于验证MOR预测的准确性和求解时间。本文首次提出了MOR技术可以为可靠性工程师提供预测电源模块中焊丝的电热和疲劳行为的显著优势。对于评估的六种MOR方法,Rational Krylov算法(RKA)在准确性和求解时间方面优于所有其他MOR方法,其中它提供的解决方案比完整的有限元求解器快84倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Model Order Reduction to the Reliability Prediction of Power Electronic Module Wirebond Structure
Predicting the reliability of power electronics module wirebond structures requires accurate computer models to investigate the design space constraints in a computationally efficient manner. This paper details a model-order reduction (MOR) method to solve the governing equations for electro-thermal behaviour of wire-bond structures and a linear-damage rule and fatigue model to predict their wear-out behaviour. Various MOR methods are compared in terms of their accuracy and computational efficiency. Finite element calculations are used to validate the MOR predictions in terms of accuracy and solution times. The paper presents for the first time the significant benefits that MOR techniques can provide to reliability engineers for predicting the electro-thermal and fatigue behaviour of wirebonds in power modules. For the six MOR methods assessed, the Rational Krylov Algorithm (RKA) outperforms all other MOR methods in terms of accuracy and solution times, where it provides a solution 84 times faster than a full finite element solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信