{"title":"功能化二氧化硅涂层磁性多壁碳纳米管在超声辅助下吸附去除环境样品中的有毒重金属(MagMWCNTs@SiO2)","authors":"Ensieh Ghasemi , Akbar Heydari , Mika Sillanpää","doi":"10.1016/j.eaef.2019.07.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this approach, an amino-functionalized silica coated multiwall carbon nanotube (AminMagMWCNTs@SiO</span><sub>2</sub><span>), for the first time, was rationally designed, prepared, and then investigated as an adsorbent for the adsorption and removal of Pb (II) and Cd (II) from environmental samples. The properties of synthesized magnetic nanoadsorbents were analyzed by Fourier transform infrared spectroscopy<span> (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The diameter of magnetic nanoadsorbents was in the range of 60–80 nm. The effects of various parameters on the adsorption efficiency were simultaneously studied using a chemometric design. The variables of interest were the amount of nanoadsorbent, pH and ultrasonication time. The experimental parameters were optimized using a Box–Behnken design and the response surface equations were derived. The removal of magnetic nanoadsorbents from the aqueous solution was simply achieved by applying an external magnetic field following the adsorption process. The adsorption efficiencies of AminMagMWCNTs@SiO</span></span><sub>2</sub> nanoadsorbent for Pb (II) and Cd (II) ions were in the range of 98–104% under the optimum condition. The results demonstrated that the amino-functionalized MagMWCNTs@SiO<sub>2</sub><span> nanoadsorbent could be used as a simple, efficient, regenerable and cost-consuming material for the removal of desired heavy metal ions from environmental water and soil samples.</span></p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 4","pages":"Pages 435-442"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2019.07.002","citationCount":"4","resultStr":"{\"title\":\"Ultrasonic assisted adsorptive removal of toxic heavy metals from environmental samples using functionalized silica-coated magnetic multiwall carbon nanotubes (MagMWCNTs@SiO2)\",\"authors\":\"Ensieh Ghasemi , Akbar Heydari , Mika Sillanpää\",\"doi\":\"10.1016/j.eaef.2019.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this approach, an amino-functionalized silica coated multiwall carbon nanotube (AminMagMWCNTs@SiO</span><sub>2</sub><span>), for the first time, was rationally designed, prepared, and then investigated as an adsorbent for the adsorption and removal of Pb (II) and Cd (II) from environmental samples. The properties of synthesized magnetic nanoadsorbents were analyzed by Fourier transform infrared spectroscopy<span> (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The diameter of magnetic nanoadsorbents was in the range of 60–80 nm. The effects of various parameters on the adsorption efficiency were simultaneously studied using a chemometric design. The variables of interest were the amount of nanoadsorbent, pH and ultrasonication time. The experimental parameters were optimized using a Box–Behnken design and the response surface equations were derived. The removal of magnetic nanoadsorbents from the aqueous solution was simply achieved by applying an external magnetic field following the adsorption process. The adsorption efficiencies of AminMagMWCNTs@SiO</span></span><sub>2</sub> nanoadsorbent for Pb (II) and Cd (II) ions were in the range of 98–104% under the optimum condition. The results demonstrated that the amino-functionalized MagMWCNTs@SiO<sub>2</sub><span> nanoadsorbent could be used as a simple, efficient, regenerable and cost-consuming material for the removal of desired heavy metal ions from environmental water and soil samples.</span></p></div>\",\"PeriodicalId\":38965,\"journal\":{\"name\":\"Engineering in Agriculture, Environment and Food\",\"volume\":\"12 4\",\"pages\":\"Pages 435-442\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eaef.2019.07.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Agriculture, Environment and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1881836619300102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836619300102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Ultrasonic assisted adsorptive removal of toxic heavy metals from environmental samples using functionalized silica-coated magnetic multiwall carbon nanotubes (MagMWCNTs@SiO2)
In this approach, an amino-functionalized silica coated multiwall carbon nanotube (AminMagMWCNTs@SiO2), for the first time, was rationally designed, prepared, and then investigated as an adsorbent for the adsorption and removal of Pb (II) and Cd (II) from environmental samples. The properties of synthesized magnetic nanoadsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The diameter of magnetic nanoadsorbents was in the range of 60–80 nm. The effects of various parameters on the adsorption efficiency were simultaneously studied using a chemometric design. The variables of interest were the amount of nanoadsorbent, pH and ultrasonication time. The experimental parameters were optimized using a Box–Behnken design and the response surface equations were derived. The removal of magnetic nanoadsorbents from the aqueous solution was simply achieved by applying an external magnetic field following the adsorption process. The adsorption efficiencies of AminMagMWCNTs@SiO2 nanoadsorbent for Pb (II) and Cd (II) ions were in the range of 98–104% under the optimum condition. The results demonstrated that the amino-functionalized MagMWCNTs@SiO2 nanoadsorbent could be used as a simple, efficient, regenerable and cost-consuming material for the removal of desired heavy metal ions from environmental water and soil samples.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.