用于高速链路仿真的可级联收发模块神经网络建模

Yixuan Zhao, Thong Nguyen, Hanzhi Ma, Erping Li, A. Cangellaris, J. Schutt-Ainé
{"title":"用于高速链路仿真的可级联收发模块神经网络建模","authors":"Yixuan Zhao, Thong Nguyen, Hanzhi Ma, Erping Li, A. Cangellaris, J. Schutt-Ainé","doi":"10.1109/EDAPS56906.2022.9995074","DOIUrl":null,"url":null,"abstract":"In this article, we present the methodology of developing cascade-able transceiver models using feed-forward neural network (FNN) for time-domain high speed link (HSL) simulation. Specifically, we focused on FNN assisted nonlinear modeling of transistor level buffers. At each cascading node, the FNN model is able to predict the corresponding voltage waveform and forward that prediction along the HSL link as input for the next available model. Compared to the industrial standard models like SPICE and IBIS, HSL simulation done through FNN models does not involve complicated converging iterations nor does it requires substantial domain knowledge. Furthermore, we demonstrated that by overlaying the high-correlation output responses from the FNN models, eye digram analysis can now be performed 20 times faster than using SPICE solvers.","PeriodicalId":401014,"journal":{"name":"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Cascade-able Transceiver Blocks With Neural Network For High Speed Link Simulation\",\"authors\":\"Yixuan Zhao, Thong Nguyen, Hanzhi Ma, Erping Li, A. Cangellaris, J. Schutt-Ainé\",\"doi\":\"10.1109/EDAPS56906.2022.9995074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present the methodology of developing cascade-able transceiver models using feed-forward neural network (FNN) for time-domain high speed link (HSL) simulation. Specifically, we focused on FNN assisted nonlinear modeling of transistor level buffers. At each cascading node, the FNN model is able to predict the corresponding voltage waveform and forward that prediction along the HSL link as input for the next available model. Compared to the industrial standard models like SPICE and IBIS, HSL simulation done through FNN models does not involve complicated converging iterations nor does it requires substantial domain knowledge. Furthermore, we demonstrated that by overlaying the high-correlation output responses from the FNN models, eye digram analysis can now be performed 20 times faster than using SPICE solvers.\",\"PeriodicalId\":401014,\"journal\":{\"name\":\"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS56906.2022.9995074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS56906.2022.9995074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了利用前馈神经网络(FNN)开发可级联收发器模型的方法,用于时域高速链路(HSL)仿真。具体来说,我们专注于FNN辅助晶体管级缓冲器的非线性建模。在每个级联节点,FNN模型能够预测相应的电压波形,并将该预测沿HSL链路转发,作为下一个可用模型的输入。与SPICE和IBIS等工业标准模型相比,通过FNN模型完成的HSL仿真不涉及复杂的收敛迭代,也不需要大量的领域知识。此外,我们证明,通过覆盖来自FNN模型的高相关输出响应,眼图分析现在可以比使用SPICE求解器快20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Cascade-able Transceiver Blocks With Neural Network For High Speed Link Simulation
In this article, we present the methodology of developing cascade-able transceiver models using feed-forward neural network (FNN) for time-domain high speed link (HSL) simulation. Specifically, we focused on FNN assisted nonlinear modeling of transistor level buffers. At each cascading node, the FNN model is able to predict the corresponding voltage waveform and forward that prediction along the HSL link as input for the next available model. Compared to the industrial standard models like SPICE and IBIS, HSL simulation done through FNN models does not involve complicated converging iterations nor does it requires substantial domain knowledge. Furthermore, we demonstrated that by overlaying the high-correlation output responses from the FNN models, eye digram analysis can now be performed 20 times faster than using SPICE solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信