{"title":"区分空间𝐶_{𝑝}(𝑋)的𝑋的基本属性","authors":"J. Ka̧kol, A. Leiderman","doi":"10.1090/bproc/95","DOIUrl":null,"url":null,"abstract":"<p>In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99] we showed that a Tychonoff space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45–60], G. M. Reed [Fund. Math. 110 (1980), pp. 145–152]) if and only if the locally convex space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript p Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{p}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is distinguished. Continuing this research, we investigate whether the class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spaces is invariant under the basic topological operations.</p>\n\n<p>We prove that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X element-of normal upper Delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X \\in \\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon upper X right-arrow upper Y\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>Y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varphi :X \\to Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a continuous surjection such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi left-parenthesis upper F right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>F</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varphi (F)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F Subscript sigma\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>σ<!-- σ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">F_{\\sigma }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-set in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for every closed set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F subset-of upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>F</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">F \\subset X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then also <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y element-of normal upper Delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Y</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y\\in \\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a consequence, if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a countable union of closed subspaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript i\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">X_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript i Baseline element-of normal upper Delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X_i\\in \\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then also <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X element-of normal upper Delta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X\\in \\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-product of any family of scattered Eberlein compact spaces is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-space and the product of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-space with a countable space is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99].</p>\n\n<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T colon upper C Subscript p Baseline left-parenthesis upper X right-parenthesis long right-arrow upper C Subscript p Baseline left-parenthesis upper Y right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T:C_p(X) \\longrightarrow C_p(Y)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a continuous linear surjection. We observe that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits an extension to a linear continuous operator <inline-formula content-type=\"math/ma","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Basic properties of 𝑋 for which the space 𝐶_{𝑝}(𝑋) is distinguished\",\"authors\":\"J. Ka̧kol, A. Leiderman\",\"doi\":\"10.1090/bproc/95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99] we showed that a Tychonoff space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45–60], G. M. Reed [Fund. Math. 110 (1980), pp. 145–152]) if and only if the locally convex space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript p Baseline left-parenthesis upper X right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>p</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{p}(X)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is distinguished. Continuing this research, we investigate whether the class <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-spaces is invariant under the basic topological operations.</p>\\n\\n<p>We prove that if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X element-of normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X \\\\in \\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi colon upper X right-arrow upper Y\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi>Y</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varphi :X \\\\to Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a continuous surjection such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi left-parenthesis upper F right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>φ<!-- φ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>F</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varphi (F)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F Subscript sigma\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>F</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>σ<!-- σ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F_{\\\\sigma }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-set in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\">\\n <mml:semantics>\\n <mml:mi>Y</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for every closed set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F subset-of upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>F</mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mi>X</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F \\\\subset X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then also <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y element-of normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Y</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y\\\\in \\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As a consequence, if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a countable union of closed subspaces <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X Subscript i\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X_i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that each <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X Subscript i Baseline element-of normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X_i\\\\in \\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, then also <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X element-of normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X\\\\in \\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In particular, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\">\\n <mml:semantics>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-product of any family of scattered Eberlein compact spaces is a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-space and the product of a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-space with a countable space is a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Delta\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Delta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99].</p>\\n\\n<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T colon upper C Subscript p Baseline left-parenthesis upper X right-parenthesis long right-arrow upper C Subscript p Baseline left-parenthesis upper Y right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>T</mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">⟶<!-- ⟶ --></mml:mo>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>Y</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T:C_p(X) \\\\longrightarrow C_p(Y)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a continuous linear surjection. We observe that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\">\\n <mml:semantics>\\n <mml:mi>T</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> admits an extension to a linear continuous operator <inline-formula content-type=\\\"math/ma\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Basic properties of 𝑋 for which the space 𝐶_{𝑝}(𝑋) is distinguished
In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99] we showed that a Tychonoff space XX is a Δ\Delta-space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45–60], G. M. Reed [Fund. Math. 110 (1980), pp. 145–152]) if and only if the locally convex space Cp(X)C_{p}(X) is distinguished. Continuing this research, we investigate whether the class Δ\Delta of Δ\Delta-spaces is invariant under the basic topological operations.
We prove that if X∈ΔX \in \Delta and φ:X→Y\varphi :X \to Y is a continuous surjection such that φ(F)\varphi (F) is an FσF_{\sigma }-set in YY for every closed set F⊂XF \subset X, then also Y∈ΔY\in \Delta. As a consequence, if XX is a countable union of closed subspaces XiX_i such that each Xi∈ΔX_i\in \Delta, then also X∈ΔX\in \Delta. In particular, σ\sigma-product of any family of scattered Eberlein compact spaces is a Δ\Delta-space and the product of a Δ\Delta-space with a countable space is a Δ\Delta-space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99].
Let T:Cp(X)⟶Cp(Y)T:C_p(X) \longrightarrow C_p(Y) be a continuous linear surjection. We observe that TT admits an extension to a linear continuous operator