{"title":"微型大气离子发动机的第一次推力","authors":"Daniel S. Drew, D. Contreras, K. Pister","doi":"10.1109/MEMSYS.2017.7863412","DOIUrl":null,"url":null,"abstract":"The bulk of current research in the realm of pico air vehicles has focused on biologically inspired propulsion mechanisms. In this work we investigate the use of electrohydrodynamic thrust produced by a microfabricated corona discharge device as a mechanism to create flying microrobots with no moving parts. Electrodes of various geometries are fabricated from a silicon-on-insulator wafer with a two mask process. Electrical characterization is performed to analyze the effect of inter-electrode gap and emitter electrode width on corona discharge and compare findings to simulation. Outlet air velocity and thrust are directly measured to analyze the effects of collector electrode geometry on performance. A roughly 100 cubic millimeter, 2.5mg thruster is assembled with a thrust to weight ratio exceeding 20.","PeriodicalId":257460,"journal":{"name":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"First thrust from a microfabricated atmospheric ion engine\",\"authors\":\"Daniel S. Drew, D. Contreras, K. Pister\",\"doi\":\"10.1109/MEMSYS.2017.7863412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bulk of current research in the realm of pico air vehicles has focused on biologically inspired propulsion mechanisms. In this work we investigate the use of electrohydrodynamic thrust produced by a microfabricated corona discharge device as a mechanism to create flying microrobots with no moving parts. Electrodes of various geometries are fabricated from a silicon-on-insulator wafer with a two mask process. Electrical characterization is performed to analyze the effect of inter-electrode gap and emitter electrode width on corona discharge and compare findings to simulation. Outlet air velocity and thrust are directly measured to analyze the effects of collector electrode geometry on performance. A roughly 100 cubic millimeter, 2.5mg thruster is assembled with a thrust to weight ratio exceeding 20.\",\"PeriodicalId\":257460,\"journal\":{\"name\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2017.7863412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2017.7863412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First thrust from a microfabricated atmospheric ion engine
The bulk of current research in the realm of pico air vehicles has focused on biologically inspired propulsion mechanisms. In this work we investigate the use of electrohydrodynamic thrust produced by a microfabricated corona discharge device as a mechanism to create flying microrobots with no moving parts. Electrodes of various geometries are fabricated from a silicon-on-insulator wafer with a two mask process. Electrical characterization is performed to analyze the effect of inter-electrode gap and emitter electrode width on corona discharge and compare findings to simulation. Outlet air velocity and thrust are directly measured to analyze the effects of collector electrode geometry on performance. A roughly 100 cubic millimeter, 2.5mg thruster is assembled with a thrust to weight ratio exceeding 20.