{"title":"一个灵活的ASIP解码器,用于组合二进制和非二进制LDPC码","authors":"F. Naessens, A. Bourdoux, A. Dejonghe","doi":"10.1109/SCVT.2010.5720462","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of a flexible combined binary and non-binary LDPC decoder. The ASIP architecture can be configured allowing re-use between both modes. Key in the architecture is parallelization, which is exploited in the SIMD engine. Binary LDPC codes intrinsically enables parallelization through layered decoding while in the non-binary case different trade-offs can be made. The implementation choice was made base on minimal memory requirement and computational effort. For a combination of supporting binary LDPC present within WLAN and WiMAX standard with non-binary GF(8) LDPC codes, a total area of 5.4 sqmm in commercial 65nm technology would be required. This size can be reduced towards 3.4 sqmm if only half of the non-binary decoding throughput is required.","PeriodicalId":344975,"journal":{"name":"2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A flexible ASIP decoder for combined binary and non-binary LDPC codes\",\"authors\":\"F. Naessens, A. Bourdoux, A. Dejonghe\",\"doi\":\"10.1109/SCVT.2010.5720462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation of a flexible combined binary and non-binary LDPC decoder. The ASIP architecture can be configured allowing re-use between both modes. Key in the architecture is parallelization, which is exploited in the SIMD engine. Binary LDPC codes intrinsically enables parallelization through layered decoding while in the non-binary case different trade-offs can be made. The implementation choice was made base on minimal memory requirement and computational effort. For a combination of supporting binary LDPC present within WLAN and WiMAX standard with non-binary GF(8) LDPC codes, a total area of 5.4 sqmm in commercial 65nm technology would be required. This size can be reduced towards 3.4 sqmm if only half of the non-binary decoding throughput is required.\",\"PeriodicalId\":344975,\"journal\":{\"name\":\"2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCVT.2010.5720462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCVT.2010.5720462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A flexible ASIP decoder for combined binary and non-binary LDPC codes
This paper describes the implementation of a flexible combined binary and non-binary LDPC decoder. The ASIP architecture can be configured allowing re-use between both modes. Key in the architecture is parallelization, which is exploited in the SIMD engine. Binary LDPC codes intrinsically enables parallelization through layered decoding while in the non-binary case different trade-offs can be made. The implementation choice was made base on minimal memory requirement and computational effort. For a combination of supporting binary LDPC present within WLAN and WiMAX standard with non-binary GF(8) LDPC codes, a total area of 5.4 sqmm in commercial 65nm technology would be required. This size can be reduced towards 3.4 sqmm if only half of the non-binary decoding throughput is required.