高速公路交通密度控制的迭代学习控制方法

Z. Hou, Jian-xin Xu
{"title":"高速公路交通密度控制的迭代学习控制方法","authors":"Z. Hou, Jian-xin Xu","doi":"10.1109/ITSC.2003.1252652","DOIUrl":null,"url":null,"abstract":"In this paper, an iterative learning control scheme is developed to the traffic density control in a macroscopic level freeway environment. With rigorous analysis, the proposed intelligent control scheme guarantees the asymptotic convergence of the traffic density to the desired one. The control scheme is applied to a freeway model, and simulation results confirm the efficacy of the proposed approach.","PeriodicalId":123155,"journal":{"name":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Freeway traffic density control using iterative learning control approach\",\"authors\":\"Z. Hou, Jian-xin Xu\",\"doi\":\"10.1109/ITSC.2003.1252652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an iterative learning control scheme is developed to the traffic density control in a macroscopic level freeway environment. With rigorous analysis, the proposed intelligent control scheme guarantees the asymptotic convergence of the traffic density to the desired one. The control scheme is applied to a freeway model, and simulation results confirm the efficacy of the proposed approach.\",\"PeriodicalId\":123155,\"journal\":{\"name\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2003.1252652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2003.1252652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种用于宏观高速公路环境下交通密度控制的迭代学习控制方案。经过严格的分析,所提出的智能控制方案保证了交通密度的渐近收敛。将该控制方案应用于高速公路模型,仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Freeway traffic density control using iterative learning control approach
In this paper, an iterative learning control scheme is developed to the traffic density control in a macroscopic level freeway environment. With rigorous analysis, the proposed intelligent control scheme guarantees the asymptotic convergence of the traffic density to the desired one. The control scheme is applied to a freeway model, and simulation results confirm the efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信