M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra
{"title":"单细胞CNA数据聚类算法的有效评价","authors":"M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra","doi":"10.1145/3444884.3444886","DOIUrl":null,"url":null,"abstract":"Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.","PeriodicalId":142206,"journal":{"name":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective Evaluation of Clustering Algorithms on Single-Cell CNA data\",\"authors\":\"M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra\",\"doi\":\"10.1145/3444884.3444886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.\",\"PeriodicalId\":142206,\"journal\":{\"name\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444884.3444886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444884.3444886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective Evaluation of Clustering Algorithms on Single-Cell CNA data
Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.