单细胞CNA数据聚类算法的有效评价

M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra
{"title":"单细胞CNA数据聚类算法的有效评价","authors":"M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra","doi":"10.1145/3444884.3444886","DOIUrl":null,"url":null,"abstract":"Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.","PeriodicalId":142206,"journal":{"name":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective Evaluation of Clustering Algorithms on Single-Cell CNA data\",\"authors\":\"M. Montemurro, Gianvito Urgese, Elena Grassi, C. Pizzino, A. Bertotti, E. Ficarra\",\"doi\":\"10.1145/3444884.3444886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.\",\"PeriodicalId\":142206,\"journal\":{\"name\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444884.3444886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444884.3444886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

聚类方法越来越多地应用于单细胞DNA测序(scDNAseq)数据来推断癌症的亚克隆结构。然而,这些数据的复杂性加剧了一些数据科学问题并影响聚类结果。此外,确定这些推论是否准确以及集群是否概括了真实的细胞系统发育并不简单,主要是因为在大多数实验设置中无法获得基本的真实信息。在这里,通过利用代表已知癌细胞系统发育的模拟测序数据,我们提出了一种正式和系统的评估已知聚类方法来研究它们的性能,并确定提供最准确的系统发育关系重建的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Evaluation of Clustering Algorithms on Single-Cell CNA data
Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信