顺序混沌退火及其在多层信道路由中的应用

Jayadeva
{"title":"顺序混沌退火及其在多层信道路由中的应用","authors":"Jayadeva","doi":"10.1109/ICVD.1999.745215","DOIUrl":null,"url":null,"abstract":"Recent developments have aroused the interest of researchers in the application of chaotic neural networks to combinatorial optimization problems. In this paper, we introduce a new approach, which is termed Sequential Chaotic Annealing. The approach combines chaotic neural networks and ideas from the theory of nonlinear optimization. The proposed neural networks are adaptive in the sense that the network \"learns\" the right cost or energy function to optimize. Sequential Chaotic Annealing is applied to multilayer channel routing using the reserved wiring model and restricted doglegging. We show that the proposed approach improves convergence to valid solutions and reduces the sensitivity to the initial states of the neurons.","PeriodicalId":443373,"journal":{"name":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sequential chaotic annealing and its application to multilayer channel routing\",\"authors\":\"Jayadeva\",\"doi\":\"10.1109/ICVD.1999.745215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments have aroused the interest of researchers in the application of chaotic neural networks to combinatorial optimization problems. In this paper, we introduce a new approach, which is termed Sequential Chaotic Annealing. The approach combines chaotic neural networks and ideas from the theory of nonlinear optimization. The proposed neural networks are adaptive in the sense that the network \\\"learns\\\" the right cost or energy function to optimize. Sequential Chaotic Annealing is applied to multilayer channel routing using the reserved wiring model and restricted doglegging. We show that the proposed approach improves convergence to valid solutions and reduces the sensitivity to the initial states of the neurons.\",\"PeriodicalId\":443373,\"journal\":{\"name\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1999.745215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1999.745215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,混沌神经网络在组合优化问题中的应用引起了研究人员的兴趣。本文提出了一种新的混沌退火方法,称为序贯混沌退火。该方法结合了混沌神经网络和非线性优化理论的思想。所提出的神经网络在网络“学习”正确的成本或能量函数来优化的意义上是自适应的。将顺序混沌退火算法应用于多层信道路由中,采用保留布线模型和受限狗腿。我们证明了所提出的方法提高了收敛到有效解的能力,并降低了对神经元初始状态的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential chaotic annealing and its application to multilayer channel routing
Recent developments have aroused the interest of researchers in the application of chaotic neural networks to combinatorial optimization problems. In this paper, we introduce a new approach, which is termed Sequential Chaotic Annealing. The approach combines chaotic neural networks and ideas from the theory of nonlinear optimization. The proposed neural networks are adaptive in the sense that the network "learns" the right cost or energy function to optimize. Sequential Chaotic Annealing is applied to multilayer channel routing using the reserved wiring model and restricted doglegging. We show that the proposed approach improves convergence to valid solutions and reduces the sensitivity to the initial states of the neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信