利用统计模型提高时延puf的可靠性

Xiaolin Xu, W. Burleson, Daniel E. Holcomb
{"title":"利用统计模型提高时延puf的可靠性","authors":"Xiaolin Xu, W. Burleson, Daniel E. Holcomb","doi":"10.1109/ISVLSI.2016.125","DOIUrl":null,"url":null,"abstract":"Physical Unclonable Functions (PUFs) use random physical variations to map input challenges to output responses in a way that is unique to each chip. PUFs are promising low cost security primitives but unreliability of outputs limits the practical applications of PUFs. This work addresses two causes of unreliability: environmental noise and device aging. To improve reliability, we constructively apply Machine Learning modeling, and use the models to predict and then discard challenge-response pairs (CRPs) that will be unreliable with respect to noise and aging on a given PUF instance. The proposed method provides flexibility to control error rate by deciding what percentage of challenges to discard. Our experiments find that a PUF with nominal reliability of 91% can be made fully reliable by discarding only 20% of challenges.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Using Statistical Models to Improve the Reliability of Delay-Based PUFs\",\"authors\":\"Xiaolin Xu, W. Burleson, Daniel E. Holcomb\",\"doi\":\"10.1109/ISVLSI.2016.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical Unclonable Functions (PUFs) use random physical variations to map input challenges to output responses in a way that is unique to each chip. PUFs are promising low cost security primitives but unreliability of outputs limits the practical applications of PUFs. This work addresses two causes of unreliability: environmental noise and device aging. To improve reliability, we constructively apply Machine Learning modeling, and use the models to predict and then discard challenge-response pairs (CRPs) that will be unreliable with respect to noise and aging on a given PUF instance. The proposed method provides flexibility to control error rate by deciding what percentage of challenges to discard. Our experiments find that a PUF with nominal reliability of 91% can be made fully reliable by discarding only 20% of challenges.\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

物理不可克隆函数(puf)使用随机的物理变化,以每种芯片独有的方式将输入挑战映射到输出响应。puf是一种很有前途的低成本安全原语,但输出不可靠限制了puf的实际应用。这项工作解决了不可靠性的两个原因:环境噪声和设备老化。为了提高可靠性,我们建设性地应用机器学习建模,并使用模型来预测然后丢弃在给定PUF实例上就噪声和老化而言不可靠的挑战响应对(CRPs)。该方法通过决定丢弃的挑战的百分比来灵活地控制错误率。我们的实验发现,一个标称可靠性为91%的PUF可以通过丢弃20%的挑战而变得完全可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Statistical Models to Improve the Reliability of Delay-Based PUFs
Physical Unclonable Functions (PUFs) use random physical variations to map input challenges to output responses in a way that is unique to each chip. PUFs are promising low cost security primitives but unreliability of outputs limits the practical applications of PUFs. This work addresses two causes of unreliability: environmental noise and device aging. To improve reliability, we constructively apply Machine Learning modeling, and use the models to predict and then discard challenge-response pairs (CRPs) that will be unreliable with respect to noise and aging on a given PUF instance. The proposed method provides flexibility to control error rate by deciding what percentage of challenges to discard. Our experiments find that a PUF with nominal reliability of 91% can be made fully reliable by discarding only 20% of challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信