{"title":"3D打印结构子建模有限元分析","authors":"J. Zarbakhsh, A. Iravani, Zeinab Amin-Akhlaghi","doi":"10.1109/EUROSIME.2015.7103095","DOIUrl":null,"url":null,"abstract":"For the first time, nested sub-modeling approach and Finite Element Analysis have been used to analyze the structural mechanical of 3D Printed part, whereas the details of 3D printing patterns included in sub-model. The results present a general tool which can improve the quality of 3D printed parts, which have multidisciplinary application in various fields. It is found that the Maximum Principle stress is highly concentrated at 3D printed layers. For a specific 3D printing pattern, the stress intensity factor has been calculated to have the value of 4. Results have been discussed from theoretical, simulation and experimental observation point of view.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sub-modeling Finite Element Analysis of 3D printed structures\",\"authors\":\"J. Zarbakhsh, A. Iravani, Zeinab Amin-Akhlaghi\",\"doi\":\"10.1109/EUROSIME.2015.7103095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, nested sub-modeling approach and Finite Element Analysis have been used to analyze the structural mechanical of 3D Printed part, whereas the details of 3D printing patterns included in sub-model. The results present a general tool which can improve the quality of 3D printed parts, which have multidisciplinary application in various fields. It is found that the Maximum Principle stress is highly concentrated at 3D printed layers. For a specific 3D printing pattern, the stress intensity factor has been calculated to have the value of 4. Results have been discussed from theoretical, simulation and experimental observation point of view.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-modeling Finite Element Analysis of 3D printed structures
For the first time, nested sub-modeling approach and Finite Element Analysis have been used to analyze the structural mechanical of 3D Printed part, whereas the details of 3D printing patterns included in sub-model. The results present a general tool which can improve the quality of 3D printed parts, which have multidisciplinary application in various fields. It is found that the Maximum Principle stress is highly concentrated at 3D printed layers. For a specific 3D printing pattern, the stress intensity factor has been calculated to have the value of 4. Results have been discussed from theoretical, simulation and experimental observation point of view.