混凝土与滑缝相互作用时的体积变化

M. Kropáček, R. Čajka, P. Mynarčík
{"title":"混凝土与滑缝相互作用时的体积变化","authors":"M. Kropáček, R. Čajka, P. Mynarčík","doi":"10.3846/mbmst.2019.070","DOIUrl":null,"url":null,"abstract":"The paper describes volume changes of cement plain concrete and steel fiber reinforced concrete with strength class C 30/37 in interaction with sliding joints. In the research experiment was performed large-dimensional specimens, on which volume changes were measured using string strain gauges. Below the large-dimensional specimens were designed sliding joints. The specimens were placed in a controlled laboratory environment and in an outdoor environment to simulate real conditions during construction and the measurements were carried out for several months. Volume changes of the concrete were compared to each other and significant influence of the sliding joints was observed. Significant influence on the development of volume changes also has dispersed reinforcement. Another part of the article is a comparison of experimental results with calculation models that allow to calculate the final shrinkage of concrete. Comparison results of volume changes with calculation models is important for demonstrating the effect of sliding joint, as currently valid calculation models do not consider the influence of subsoil and sliding joints, and the results are different as expected. For comparison model B4 (Bazant, 2015), model from technical standard EN 1992-1-1 (CSN EN 1992-1-1, 2006), model from fib model code 2010 (FIB, 2010) and model ACI (ACI, 2008) are used. The paper describes a unique experiment dealing with the influence of sliding joint on the development of volume changes of concrete from beginning of setting and hardening of concrete under precisely defined conditions, that allow comparison with calculation models and thus points to the shortcomings of the building practice.","PeriodicalId":169478,"journal":{"name":"The proceedings of the 13th international conference \"Modern Building Materials, Structures and Techniques\" (MBMST 2019)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volume changes of concrete in interaction with sliding joint\",\"authors\":\"M. Kropáček, R. Čajka, P. Mynarčík\",\"doi\":\"10.3846/mbmst.2019.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes volume changes of cement plain concrete and steel fiber reinforced concrete with strength class C 30/37 in interaction with sliding joints. In the research experiment was performed large-dimensional specimens, on which volume changes were measured using string strain gauges. Below the large-dimensional specimens were designed sliding joints. The specimens were placed in a controlled laboratory environment and in an outdoor environment to simulate real conditions during construction and the measurements were carried out for several months. Volume changes of the concrete were compared to each other and significant influence of the sliding joints was observed. Significant influence on the development of volume changes also has dispersed reinforcement. Another part of the article is a comparison of experimental results with calculation models that allow to calculate the final shrinkage of concrete. Comparison results of volume changes with calculation models is important for demonstrating the effect of sliding joint, as currently valid calculation models do not consider the influence of subsoil and sliding joints, and the results are different as expected. For comparison model B4 (Bazant, 2015), model from technical standard EN 1992-1-1 (CSN EN 1992-1-1, 2006), model from fib model code 2010 (FIB, 2010) and model ACI (ACI, 2008) are used. The paper describes a unique experiment dealing with the influence of sliding joint on the development of volume changes of concrete from beginning of setting and hardening of concrete under precisely defined conditions, that allow comparison with calculation models and thus points to the shortcomings of the building practice.\",\"PeriodicalId\":169478,\"journal\":{\"name\":\"The proceedings of the 13th international conference \\\"Modern Building Materials, Structures and Techniques\\\" (MBMST 2019)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The proceedings of the 13th international conference \\\"Modern Building Materials, Structures and Techniques\\\" (MBMST 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mbmst.2019.070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The proceedings of the 13th international conference \"Modern Building Materials, Structures and Techniques\" (MBMST 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mbmst.2019.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了强度等级为c30 /37的水泥素混凝土和钢纤维混凝土在滑动缝作用下的体积变化。研究中采用大尺寸试样,用弦应变仪测量试样的体积变化。大尺寸试件下方设计了滑动节点。试样分别放置在受控的实验室环境和室外环境中模拟施工过程中的真实条件,并进行了数月的测量。对比了混凝土的体积变化,发现滑动缝对混凝土体积变化有显著影响。对发展有显著影响的还有体积的变化,分散的钢筋。文章的另一部分是试验结果与计算模型的比较,计算模型可以计算混凝土的最终收缩率。体积变化结果与计算模型的对比是验证滑动节理作用的重要依据,目前有效的计算模型没有考虑地基和滑动节理的影响,计算结果与预期存在差异。为了比较模型B4 (Bazant, 2015)、技术标准EN 1992-1-1 (CSN EN 1992-1-1, 2006)中的模型、fib模型代码2010中的模型(fib, 2010)和模型ACI (ACI, 2008)。本文描述了一个独特的实验,处理滑动缝对混凝土从凝结开始到混凝土在精确规定的条件下硬化的体积变化发展的影响,可以与计算模型进行比较,从而指出了建筑实践的不足之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume changes of concrete in interaction with sliding joint
The paper describes volume changes of cement plain concrete and steel fiber reinforced concrete with strength class C 30/37 in interaction with sliding joints. In the research experiment was performed large-dimensional specimens, on which volume changes were measured using string strain gauges. Below the large-dimensional specimens were designed sliding joints. The specimens were placed in a controlled laboratory environment and in an outdoor environment to simulate real conditions during construction and the measurements were carried out for several months. Volume changes of the concrete were compared to each other and significant influence of the sliding joints was observed. Significant influence on the development of volume changes also has dispersed reinforcement. Another part of the article is a comparison of experimental results with calculation models that allow to calculate the final shrinkage of concrete. Comparison results of volume changes with calculation models is important for demonstrating the effect of sliding joint, as currently valid calculation models do not consider the influence of subsoil and sliding joints, and the results are different as expected. For comparison model B4 (Bazant, 2015), model from technical standard EN 1992-1-1 (CSN EN 1992-1-1, 2006), model from fib model code 2010 (FIB, 2010) and model ACI (ACI, 2008) are used. The paper describes a unique experiment dealing with the influence of sliding joint on the development of volume changes of concrete from beginning of setting and hardening of concrete under precisely defined conditions, that allow comparison with calculation models and thus points to the shortcomings of the building practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信