一种优化模拟电路的混合遗传算法

S. Papadopoulos, R. Mack, R. Massara
{"title":"一种优化模拟电路的混合遗传算法","authors":"S. Papadopoulos, R. Mack, R. Massara","doi":"10.1109/MWSCAS.2000.951605","DOIUrl":null,"url":null,"abstract":"An approach is presented for the automated sizing of analog circuits based upon a combination of a genetic algorithm (GA) with a least squares (Gauss-Newton) gradient search. The method combines the global-search properties of the GA with the fast local convergence properties of the least squares method to produce a circuit design from random initial component values in a reduced time compared to the application of a direct GA method, or a restart least squares algorithm. Results are presented to demonstrate the application of the method in the design of both passive and active circuits.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A hybrid genetic algorithm method for optimizing analog circuits\",\"authors\":\"S. Papadopoulos, R. Mack, R. Massara\",\"doi\":\"10.1109/MWSCAS.2000.951605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach is presented for the automated sizing of analog circuits based upon a combination of a genetic algorithm (GA) with a least squares (Gauss-Newton) gradient search. The method combines the global-search properties of the GA with the fast local convergence properties of the least squares method to produce a circuit design from random initial component values in a reduced time compared to the application of a direct GA method, or a restart least squares algorithm. Results are presented to demonstrate the application of the method in the design of both passive and active circuits.\",\"PeriodicalId\":437349,\"journal\":{\"name\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2000.951605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.951605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于遗传算法和最小二乘高斯-牛顿梯度搜索相结合的模拟电路自动尺寸确定方法。该方法将遗传算法的全局搜索特性与最小二乘法的快速局部收敛特性相结合,与直接遗传算法或重新启动最小二乘法相比,可以在更短的时间内从随机初始元件值生成电路设计。结果表明了该方法在无源和有源电路设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid genetic algorithm method for optimizing analog circuits
An approach is presented for the automated sizing of analog circuits based upon a combination of a genetic algorithm (GA) with a least squares (Gauss-Newton) gradient search. The method combines the global-search properties of the GA with the fast local convergence properties of the least squares method to produce a circuit design from random initial component values in a reduced time compared to the application of a direct GA method, or a restart least squares algorithm. Results are presented to demonstrate the application of the method in the design of both passive and active circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信