{"title":"具有独立控制功率传输和直流电压的低开关损耗单源升压多电平逆变器的电网集成","authors":"Anurag Priyadarshi, Pratik Kumar Kar, S. Karanki","doi":"10.1109/ECCE-Asia49820.2021.9479032","DOIUrl":null,"url":null,"abstract":"This paper presents a closed-loop control architecture of a grid-tied single-source multilevel inverter (MLI) with reduced switching loss, to control the DC-link as well as the power supplied to the utility system. The converter topology utilizes a diode-capacitor ladder network to facilitate a number of inherently-balanced voltages, which resolves the predominant constraint of MLIs having several separate dc sources. Furthermore, zero-voltage-switching (ZVS) is achieved for the solitary high-frequency switch, which mitigates the switching losses. High-frequency operation of the switch facilitates the reduced components size resulting in less cost and weight of the converter. An experimental set up for closed-loop control of the hardware prototype of the proposed converter has been developed. The performance of the grid-connected MLI is evaluated in various real-time conditions and the experimental results are presented.","PeriodicalId":145366,"journal":{"name":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Grid Integration of a Reduced Switching Loss Single-Source Boost Multilevel Inverter with Independent Control of Power Transfer and DC-Link Voltage\",\"authors\":\"Anurag Priyadarshi, Pratik Kumar Kar, S. Karanki\",\"doi\":\"10.1109/ECCE-Asia49820.2021.9479032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a closed-loop control architecture of a grid-tied single-source multilevel inverter (MLI) with reduced switching loss, to control the DC-link as well as the power supplied to the utility system. The converter topology utilizes a diode-capacitor ladder network to facilitate a number of inherently-balanced voltages, which resolves the predominant constraint of MLIs having several separate dc sources. Furthermore, zero-voltage-switching (ZVS) is achieved for the solitary high-frequency switch, which mitigates the switching losses. High-frequency operation of the switch facilitates the reduced components size resulting in less cost and weight of the converter. An experimental set up for closed-loop control of the hardware prototype of the proposed converter has been developed. The performance of the grid-connected MLI is evaluated in various real-time conditions and the experimental results are presented.\",\"PeriodicalId\":145366,\"journal\":{\"name\":\"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-Asia49820.2021.9479032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-Asia49820.2021.9479032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grid Integration of a Reduced Switching Loss Single-Source Boost Multilevel Inverter with Independent Control of Power Transfer and DC-Link Voltage
This paper presents a closed-loop control architecture of a grid-tied single-source multilevel inverter (MLI) with reduced switching loss, to control the DC-link as well as the power supplied to the utility system. The converter topology utilizes a diode-capacitor ladder network to facilitate a number of inherently-balanced voltages, which resolves the predominant constraint of MLIs having several separate dc sources. Furthermore, zero-voltage-switching (ZVS) is achieved for the solitary high-frequency switch, which mitigates the switching losses. High-frequency operation of the switch facilitates the reduced components size resulting in less cost and weight of the converter. An experimental set up for closed-loop control of the hardware prototype of the proposed converter has been developed. The performance of the grid-connected MLI is evaluated in various real-time conditions and the experimental results are presented.