{"title":"用任务原语演示工业机械臂取放任务的编程","authors":"Alexander Skoglund, B. Iliev, B. Kadmiry, R. Palm","doi":"10.1109/CIRA.2007.382863","DOIUrl":null,"url":null,"abstract":"This article presents an approach to Programming by Demonstration (PbD) to simplify programming of industrial manipulators. By using a set of task primitives for a known task type, the demonstration is interpreted and a manipulator program is automatically generated. A pick-and-place task is analyzed, based on the velocity profile, and decomposed in task primitives. Task primitives are basic actions of the robot/gripper, which can be executed in a sequence to form a complete a task. For modeling and generation of the demonstrated trajectory, fuzzy time clustering is used, resulting in smooth and accurate motions. To illustrate our approach, we carried out our experiments on a real industrial manipulator.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Programming by Demonstration of Pick-and-Place Tasks for Industrial Manipulators using Task Primitives\",\"authors\":\"Alexander Skoglund, B. Iliev, B. Kadmiry, R. Palm\",\"doi\":\"10.1109/CIRA.2007.382863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an approach to Programming by Demonstration (PbD) to simplify programming of industrial manipulators. By using a set of task primitives for a known task type, the demonstration is interpreted and a manipulator program is automatically generated. A pick-and-place task is analyzed, based on the velocity profile, and decomposed in task primitives. Task primitives are basic actions of the robot/gripper, which can be executed in a sequence to form a complete a task. For modeling and generation of the demonstrated trajectory, fuzzy time clustering is used, resulting in smooth and accurate motions. To illustrate our approach, we carried out our experiments on a real industrial manipulator.\",\"PeriodicalId\":301626,\"journal\":{\"name\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2007.382863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Programming by Demonstration of Pick-and-Place Tasks for Industrial Manipulators using Task Primitives
This article presents an approach to Programming by Demonstration (PbD) to simplify programming of industrial manipulators. By using a set of task primitives for a known task type, the demonstration is interpreted and a manipulator program is automatically generated. A pick-and-place task is analyzed, based on the velocity profile, and decomposed in task primitives. Task primitives are basic actions of the robot/gripper, which can be executed in a sequence to form a complete a task. For modeling and generation of the demonstrated trajectory, fuzzy time clustering is used, resulting in smooth and accurate motions. To illustrate our approach, we carried out our experiments on a real industrial manipulator.