Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei
{"title":"一个3mm2的可编程贝叶斯推理加速器,用于无监督机器感知,使用并行吉布斯采样在16nm","authors":"Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei","doi":"10.1109/vlsicircuits18222.2020.9162784","DOIUrl":null,"url":null,"abstract":"This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm\",\"authors\":\"Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei\",\"doi\":\"10.1109/vlsicircuits18222.2020.9162784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vlsicircuits18222.2020.9162784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm
This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.