柯西空间中满足整型压缩条件的映射的耦合不动点定理

S. A. Aniki, M. O. Ajisope, Muhammed Raji, Femi Adegboye
{"title":"柯西空间中满足整型压缩条件的映射的耦合不动点定理","authors":"S. A. Aniki, M. O. Ajisope, Muhammed Raji, Femi Adegboye","doi":"10.46792/fuoyejet.v7i3.855","DOIUrl":null,"url":null,"abstract":"The contractive-type coupled fixed point theory is a generalization of Banach contraction theory. This research analyze the existence and uniqueness of mappings defined on Cauchy metric spaces via coupled fixed point theorem which satisfies a contractive inequality of integral-type. Furthermore, it generalizes contractive inequality of integral-type of fixed point to coupled fixed point theorem as an improvement to available research in literature. Some illustrative examples to back up our claims are included.","PeriodicalId":323504,"journal":{"name":"FUOYE Journal of Engineering and Technology","volume":"12 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Fixed Points Theorem for Mappings Satisfying a Contractive Condition of Integral Type in Cauchy Spaces\",\"authors\":\"S. A. Aniki, M. O. Ajisope, Muhammed Raji, Femi Adegboye\",\"doi\":\"10.46792/fuoyejet.v7i3.855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contractive-type coupled fixed point theory is a generalization of Banach contraction theory. This research analyze the existence and uniqueness of mappings defined on Cauchy metric spaces via coupled fixed point theorem which satisfies a contractive inequality of integral-type. Furthermore, it generalizes contractive inequality of integral-type of fixed point to coupled fixed point theorem as an improvement to available research in literature. Some illustrative examples to back up our claims are included.\",\"PeriodicalId\":323504,\"journal\":{\"name\":\"FUOYE Journal of Engineering and Technology\",\"volume\":\"12 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUOYE Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46792/fuoyejet.v7i3.855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUOYE Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46792/fuoyejet.v7i3.855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

收缩型耦合不动点理论是Banach收缩理论的推广。本文利用耦合不动点定理分析了柯西度量空间上定义的映射的存在唯一性,该映射满足一个积分型的压缩不等式。进一步将积分型不动点的压缩不等式推广到耦合不动点定理,作为对已有文献研究的改进。文中还列举了一些例子来支持我们的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Fixed Points Theorem for Mappings Satisfying a Contractive Condition of Integral Type in Cauchy Spaces
The contractive-type coupled fixed point theory is a generalization of Banach contraction theory. This research analyze the existence and uniqueness of mappings defined on Cauchy metric spaces via coupled fixed point theorem which satisfies a contractive inequality of integral-type. Furthermore, it generalizes contractive inequality of integral-type of fixed point to coupled fixed point theorem as an improvement to available research in literature. Some illustrative examples to back up our claims are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信