利用遗传算法优化楼面面积

M. Rebaudengo, M. Reorda
{"title":"利用遗传算法优化楼面面积","authors":"M. Rebaudengo, M. Reorda","doi":"10.1109/GLSV.1994.290002","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of Floorplan Area Optimization; an approach based on Genetic Algorithms is proposed. The method produces optimal results with CPU time requirements comparable with the ones of other approaches but presents some advantages: it is simple to implement, it allows the user to easily trade off CPU time with result accuracy, it requires a limited amount of memory to store partial results, it is not sensible to special structures like nested wheels. Experimental results on the biggest problems proposed in the literature are reported.<<ETX>>","PeriodicalId":330584,"journal":{"name":"Proceedings of 4th Great Lakes Symposium on VLSI","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Floorplan area optimization using genetic algorithms\",\"authors\":\"M. Rebaudengo, M. Reorda\",\"doi\":\"10.1109/GLSV.1994.290002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the problem of Floorplan Area Optimization; an approach based on Genetic Algorithms is proposed. The method produces optimal results with CPU time requirements comparable with the ones of other approaches but presents some advantages: it is simple to implement, it allows the user to easily trade off CPU time with result accuracy, it requires a limited amount of memory to store partial results, it is not sensible to special structures like nested wheels. Experimental results on the biggest problems proposed in the literature are reported.<<ETX>>\",\"PeriodicalId\":330584,\"journal\":{\"name\":\"Proceedings of 4th Great Lakes Symposium on VLSI\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 4th Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLSV.1994.290002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLSV.1994.290002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文主要研究建筑平面面积优化问题;提出了一种基于遗传算法的方法。该方法产生的最佳结果与其他方法的CPU时间要求相当,但也有一些优点:它易于实现,它允许用户轻松地在CPU时间与结果准确性之间进行权衡,它需要有限的内存来存储部分结果,它对嵌套轮等特殊结构不敏感。本文报道了文献中提出的最大问题的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floorplan area optimization using genetic algorithms
The paper deals with the problem of Floorplan Area Optimization; an approach based on Genetic Algorithms is proposed. The method produces optimal results with CPU time requirements comparable with the ones of other approaches but presents some advantages: it is simple to implement, it allows the user to easily trade off CPU time with result accuracy, it requires a limited amount of memory to store partial results, it is not sensible to special structures like nested wheels. Experimental results on the biggest problems proposed in the literature are reported.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信