针对噪声图像进行特征聚合,改进“纹理/非纹理”分类

A. Naumenko, V. Lukin, M. Zriakhov, S. Krivenko
{"title":"针对噪声图像进行特征聚合,改进“纹理/非纹理”分类","authors":"A. Naumenko, V. Lukin, M. Zriakhov, S. Krivenko","doi":"10.1109/ELNANO.2017.7939808","DOIUrl":null,"url":null,"abstract":"This article is devoted to improving previously developed texture classifier that performs on noisy images. The basic principle of this classifier is to join several simple local parameters using some fuzzy logic system (support vector machine or neural network). It is shown that aggregating procedure applied on the classifier's input can result in significant improvement of its efficiency.","PeriodicalId":333746,"journal":{"name":"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature aggregation for noisy image to improve “texture/non-texture” classification\",\"authors\":\"A. Naumenko, V. Lukin, M. Zriakhov, S. Krivenko\",\"doi\":\"10.1109/ELNANO.2017.7939808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to improving previously developed texture classifier that performs on noisy images. The basic principle of this classifier is to join several simple local parameters using some fuzzy logic system (support vector machine or neural network). It is shown that aggregating procedure applied on the classifier's input can result in significant improvement of its efficiency.\",\"PeriodicalId\":333746,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELNANO.2017.7939808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2017.7939808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于改进先前开发的对噪声图像执行的纹理分类器。该分类器的基本原理是利用模糊逻辑系统(支持向量机或神经网络)将几个简单的局部参数连接起来。结果表明,对分类器的输入进行聚合处理可以显著提高分类器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature aggregation for noisy image to improve “texture/non-texture” classification
This article is devoted to improving previously developed texture classifier that performs on noisy images. The basic principle of this classifier is to join several simple local parameters using some fuzzy logic system (support vector machine or neural network). It is shown that aggregating procedure applied on the classifier's input can result in significant improvement of its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信