{"title":"采用流量重聚合和跨层共享保护的经济高效的多层网络设计","authors":"T. Hashiguchi, Y. Takita, K. Tajima, T. Katagiri","doi":"10.1109/DRCN.2015.7148979","DOIUrl":null,"url":null,"abstract":"Shared protection/restoration is a promising solution for reducing protection resources and is supported at each layer of the current multi-layer networks. Software-defined networking is expected to reduce equipment cost as well as operational cost by orchestrating these shared protection functionalities. However, although protection resource sharing improves link utilization, it sometimes increases the required equipment. Meanwhile, traffic re-aggregation at each layer is an important technique for low volume traffic to utilize the underlying link capacity more efficiently, but re-aggregation also makes it difficult to share protection resources with traffic at lower layers. In this paper, we present multi-layer network design strategy and method that reduce equipment cost by means of both traffic re-aggregation at each layer and protection resource sharing among multiple service traffic at different layers. The strategy first prioritizes traffic re-aggregation at each layer, and then maximally delegates shared protection to lower layers as long as it does not increase the required capacity at the lower layer. Evaluation results from the example three-layer networks confirm that the proposed method can effectively reduce equipment cost compared to the conventional design method. Cost reduction is achieved by leveraging shared protection functions at multiple layers.","PeriodicalId":123545,"journal":{"name":"2015 11th International Conference on the Design of Reliable Communication Networks (DRCN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost-efficient multi-layer network design employing traffic re-aggregation and shared protection across layers\",\"authors\":\"T. Hashiguchi, Y. Takita, K. Tajima, T. Katagiri\",\"doi\":\"10.1109/DRCN.2015.7148979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shared protection/restoration is a promising solution for reducing protection resources and is supported at each layer of the current multi-layer networks. Software-defined networking is expected to reduce equipment cost as well as operational cost by orchestrating these shared protection functionalities. However, although protection resource sharing improves link utilization, it sometimes increases the required equipment. Meanwhile, traffic re-aggregation at each layer is an important technique for low volume traffic to utilize the underlying link capacity more efficiently, but re-aggregation also makes it difficult to share protection resources with traffic at lower layers. In this paper, we present multi-layer network design strategy and method that reduce equipment cost by means of both traffic re-aggregation at each layer and protection resource sharing among multiple service traffic at different layers. The strategy first prioritizes traffic re-aggregation at each layer, and then maximally delegates shared protection to lower layers as long as it does not increase the required capacity at the lower layer. Evaluation results from the example three-layer networks confirm that the proposed method can effectively reduce equipment cost compared to the conventional design method. Cost reduction is achieved by leveraging shared protection functions at multiple layers.\",\"PeriodicalId\":123545,\"journal\":{\"name\":\"2015 11th International Conference on the Design of Reliable Communication Networks (DRCN)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th International Conference on the Design of Reliable Communication Networks (DRCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRCN.2015.7148979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on the Design of Reliable Communication Networks (DRCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRCN.2015.7148979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-efficient multi-layer network design employing traffic re-aggregation and shared protection across layers
Shared protection/restoration is a promising solution for reducing protection resources and is supported at each layer of the current multi-layer networks. Software-defined networking is expected to reduce equipment cost as well as operational cost by orchestrating these shared protection functionalities. However, although protection resource sharing improves link utilization, it sometimes increases the required equipment. Meanwhile, traffic re-aggregation at each layer is an important technique for low volume traffic to utilize the underlying link capacity more efficiently, but re-aggregation also makes it difficult to share protection resources with traffic at lower layers. In this paper, we present multi-layer network design strategy and method that reduce equipment cost by means of both traffic re-aggregation at each layer and protection resource sharing among multiple service traffic at different layers. The strategy first prioritizes traffic re-aggregation at each layer, and then maximally delegates shared protection to lower layers as long as it does not increase the required capacity at the lower layer. Evaluation results from the example three-layer networks confirm that the proposed method can effectively reduce equipment cost compared to the conventional design method. Cost reduction is achieved by leveraging shared protection functions at multiple layers.