基于ICA的PolSAR图像去噪

R. Malutan, R. Terebeș, Mihaela Cislariu, C. Germain, Ioana Ilea
{"title":"基于ICA的PolSAR图像去噪","authors":"R. Malutan, R. Terebeș, Mihaela Cislariu, C. Germain, Ioana Ilea","doi":"10.1109/ISETC.2016.7781128","DOIUrl":null,"url":null,"abstract":"A speckle denoising in polarimetric SAR images is proposed considering as filtering method the sparse code shrinkage algorithm based on ICA. Even thou the ICA method was widely used in audio signal processing, in combination with shrinkage function give good results for multiplicative noise reduction. The Extended Generalized Lambda Distribution (EGLD) algorithm was set to estimate the transform matrix before applying the sparse coding. The proposed method was tested on PolSAR datasets and compared with well-known speckle noise removal algorithms. The evaluation indexes gave good results for the ICA based method.","PeriodicalId":238901,"journal":{"name":"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICA based PolSAR image denoising\",\"authors\":\"R. Malutan, R. Terebeș, Mihaela Cislariu, C. Germain, Ioana Ilea\",\"doi\":\"10.1109/ISETC.2016.7781128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A speckle denoising in polarimetric SAR images is proposed considering as filtering method the sparse code shrinkage algorithm based on ICA. Even thou the ICA method was widely used in audio signal processing, in combination with shrinkage function give good results for multiplicative noise reduction. The Extended Generalized Lambda Distribution (EGLD) algorithm was set to estimate the transform matrix before applying the sparse coding. The proposed method was tested on PolSAR datasets and compared with well-known speckle noise removal algorithms. The evaluation indexes gave good results for the ICA based method.\",\"PeriodicalId\":238901,\"journal\":{\"name\":\"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISETC.2016.7781128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISETC.2016.7781128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种极化SAR图像的散斑去噪方法,将基于ICA的稀疏编码收缩算法作为滤波方法。尽管ICA方法在音频信号处理中得到了广泛的应用,但它与收缩函数相结合,在乘性降噪方面取得了很好的效果。采用扩展广义Lambda分布(EGLD)算法对变换矩阵进行估计,然后再进行稀疏编码。在PolSAR数据集上对该方法进行了测试,并与常用的散斑去噪算法进行了比较。评价指标表明,基于ICA的方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ICA based PolSAR image denoising
A speckle denoising in polarimetric SAR images is proposed considering as filtering method the sparse code shrinkage algorithm based on ICA. Even thou the ICA method was widely used in audio signal processing, in combination with shrinkage function give good results for multiplicative noise reduction. The Extended Generalized Lambda Distribution (EGLD) algorithm was set to estimate the transform matrix before applying the sparse coding. The proposed method was tested on PolSAR datasets and compared with well-known speckle noise removal algorithms. The evaluation indexes gave good results for the ICA based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信