n阶循环平稳性的光谱表征

William A. Gardner
{"title":"n阶循环平稳性的光谱表征","authors":"William A. Gardner","doi":"10.1109/SPECT.1990.205585","DOIUrl":null,"url":null,"abstract":"The spectral characterization of second-order (or wide-sense) cyclostationarity gives rise to a generalization of the Wiener relation between the power spectral density and the autocorrelation associated with second-order stationary time-series. This generalization, called the cyclic Wiener relation, is a Fourier transform relation between the spectral autocorrelation function and the cyclic temporal autocorrelation function, both defined in terms of time averages on a single time-series. The spectral characterization is generalized from second-order cyclostationarity to n-th order cyclostationarity for n=2,3,4,5,. . ., and some basic properties of the generalised spectral characterization are presented. These include a further generalization of the Wiener relation, called the n-th order cyclic Wiener relation, which relates the n-th order joint cyclic temporal moment function to the n-th order joint spectral moment function.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Spectral characterization of n-th order cyclostationarity\",\"authors\":\"William A. Gardner\",\"doi\":\"10.1109/SPECT.1990.205585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral characterization of second-order (or wide-sense) cyclostationarity gives rise to a generalization of the Wiener relation between the power spectral density and the autocorrelation associated with second-order stationary time-series. This generalization, called the cyclic Wiener relation, is a Fourier transform relation between the spectral autocorrelation function and the cyclic temporal autocorrelation function, both defined in terms of time averages on a single time-series. The spectral characterization is generalized from second-order cyclostationarity to n-th order cyclostationarity for n=2,3,4,5,. . ., and some basic properties of the generalised spectral characterization are presented. These include a further generalization of the Wiener relation, called the n-th order cyclic Wiener relation, which relates the n-th order joint cyclic temporal moment function to the n-th order joint spectral moment function.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"404 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

二阶(或广义)周期平稳性的谱特征,使功率谱密度与二阶平稳时间序列的自相关之间的维纳关系得到推广。这种推广称为循环维纳关系,是谱自相关函数和循环时间自相关函数之间的傅里叶变换关系,两者都是根据单个时间序列的时间平均值来定义的。将n=2、3、4、5、…时的谱特性由二阶循环平稳推广到n阶循环平稳,并给出了广义谱特性的一些基本性质。这包括对维纳关系的进一步推广,称为n阶循环维纳关系,它将n阶联合循环时间矩函数与n阶联合谱矩函数联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral characterization of n-th order cyclostationarity
The spectral characterization of second-order (or wide-sense) cyclostationarity gives rise to a generalization of the Wiener relation between the power spectral density and the autocorrelation associated with second-order stationary time-series. This generalization, called the cyclic Wiener relation, is a Fourier transform relation between the spectral autocorrelation function and the cyclic temporal autocorrelation function, both defined in terms of time averages on a single time-series. The spectral characterization is generalized from second-order cyclostationarity to n-th order cyclostationarity for n=2,3,4,5,. . ., and some basic properties of the generalised spectral characterization are presented. These include a further generalization of the Wiener relation, called the n-th order cyclic Wiener relation, which relates the n-th order joint cyclic temporal moment function to the n-th order joint spectral moment function.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信