HARA效用函数下离散时间最优投资组合

N. Rizal, B. Surya, S. Wiryono
{"title":"HARA效用函数下离散时间最优投资组合","authors":"N. Rizal, B. Surya, S. Wiryono","doi":"10.1109/ISTMET.2014.6936546","DOIUrl":null,"url":null,"abstract":"In this study we are going to discuss about optimal dynamic portfolio strategy given the new information of the market to the investor. The objective is to find the optimal strategy that maximizes the expected total hyperbolic absolute risk aversion (HARA)-utility of investor weight portfolio over finite life time. There are two assets that take place in to the dynamic portfolio model, risky asset and risk-free bond with constant interest rate. The underlying stock price is obtained under binomial process of Markov chain approximation of diffusion process. The stochastic dynamic programming is used as the approach to solve the problem. In contrast to the continuous-time counterpart, the optimal trading strategies are found to be time-dependent in recursive manners. Sufficient conditions for short selling are given in terms of physical and martingale probabilities of the stock price.","PeriodicalId":364834,"journal":{"name":"2014 International Symposium on Technology Management and Emerging Technologies","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal portfolio in discrete-time under HARA utility function\",\"authors\":\"N. Rizal, B. Surya, S. Wiryono\",\"doi\":\"10.1109/ISTMET.2014.6936546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we are going to discuss about optimal dynamic portfolio strategy given the new information of the market to the investor. The objective is to find the optimal strategy that maximizes the expected total hyperbolic absolute risk aversion (HARA)-utility of investor weight portfolio over finite life time. There are two assets that take place in to the dynamic portfolio model, risky asset and risk-free bond with constant interest rate. The underlying stock price is obtained under binomial process of Markov chain approximation of diffusion process. The stochastic dynamic programming is used as the approach to solve the problem. In contrast to the continuous-time counterpart, the optimal trading strategies are found to be time-dependent in recursive manners. Sufficient conditions for short selling are given in terms of physical and martingale probabilities of the stock price.\",\"PeriodicalId\":364834,\"journal\":{\"name\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTMET.2014.6936546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Technology Management and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2014.6936546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将讨论在给定市场新信息的情况下,投资者的最优动态投资组合策略。目标是寻找在有限生命周期内使投资者权重组合的预期总双曲绝对风险厌恶(HARA)-效用最大化的最优策略。在动态投资组合模型中存在两种资产:风险资产和无风险恒利率债券。在扩散过程的马尔可夫链近似二项式过程下得到了标的股票价格。采用随机动态规划方法求解该问题。与连续时间交易策略相比,最优交易策略以递归方式具有时间依赖性。从股票价格的物理概率和鞅概率两方面给出了卖空的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal portfolio in discrete-time under HARA utility function
In this study we are going to discuss about optimal dynamic portfolio strategy given the new information of the market to the investor. The objective is to find the optimal strategy that maximizes the expected total hyperbolic absolute risk aversion (HARA)-utility of investor weight portfolio over finite life time. There are two assets that take place in to the dynamic portfolio model, risky asset and risk-free bond with constant interest rate. The underlying stock price is obtained under binomial process of Markov chain approximation of diffusion process. The stochastic dynamic programming is used as the approach to solve the problem. In contrast to the continuous-time counterpart, the optimal trading strategies are found to be time-dependent in recursive manners. Sufficient conditions for short selling are given in terms of physical and martingale probabilities of the stock price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信