基于李分解的无源输电线宏观模型阶次选择

I. Elfadel, H. Huang
{"title":"基于李分解的无源输电线宏观模型阶次选择","authors":"I. Elfadel, H. Huang","doi":"10.1109/EPEP.2004.1407601","DOIUrl":null,"url":null,"abstract":"In a passive macromodel for lossy, dispersive multiconductor transmission lines (MTL's) has been proposed. The macromodel uses a multiplicative approximation of the matrix exponential known as the Lie product. The circuit implementation of the macromodel is a cascade of elementary cells, each cell being the combination of a pure delay element and a lumped circuit representing the transmission line losses. Compared with passive rational macromodeling, the Lie product macromodel is capable of efficiently simulating long, low-loss MTL's while preserving passivity. In this paper, we build on the results of and use transmission line theory to derive a new time-domain error criterion for the Lie product macromodel. We also show how this criterion can be used to determine the minimum number of cells needed in the macromodel to guarantee that the magnitude of the time-domain error is below a given engineering tolerance.","PeriodicalId":143349,"journal":{"name":"Electrical Performance of Electronic Packaging - 2004","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order selection in passive transmission line macromodels based on the Lie decomposition\",\"authors\":\"I. Elfadel, H. Huang\",\"doi\":\"10.1109/EPEP.2004.1407601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a passive macromodel for lossy, dispersive multiconductor transmission lines (MTL's) has been proposed. The macromodel uses a multiplicative approximation of the matrix exponential known as the Lie product. The circuit implementation of the macromodel is a cascade of elementary cells, each cell being the combination of a pure delay element and a lumped circuit representing the transmission line losses. Compared with passive rational macromodeling, the Lie product macromodel is capable of efficiently simulating long, low-loss MTL's while preserving passivity. In this paper, we build on the results of and use transmission line theory to derive a new time-domain error criterion for the Lie product macromodel. We also show how this criterion can be used to determine the minimum number of cells needed in the macromodel to guarantee that the magnitude of the time-domain error is below a given engineering tolerance.\",\"PeriodicalId\":143349,\"journal\":{\"name\":\"Electrical Performance of Electronic Packaging - 2004\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Performance of Electronic Packaging - 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2004.1407601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Performance of Electronic Packaging - 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2004.1407601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种损耗色散多导体传输线的无源宏观模型。宏观模型使用矩阵指数的乘法近似,称为李积。宏模型的电路实现是一个级联的基本单元,每个单元是一个纯延迟元件和一个表示传输线损耗的集总电路的组合。与被动理性宏模型相比,李积宏模型在保持无源性的同时,能够有效地模拟长、低损耗的MTL。本文在前人研究成果的基础上,利用传输线理论推导出李积宏模型的时域误差判据。我们还展示了如何使用该准则来确定宏模型中所需的最小单元数,以保证时域误差的大小低于给定的工程公差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order selection in passive transmission line macromodels based on the Lie decomposition
In a passive macromodel for lossy, dispersive multiconductor transmission lines (MTL's) has been proposed. The macromodel uses a multiplicative approximation of the matrix exponential known as the Lie product. The circuit implementation of the macromodel is a cascade of elementary cells, each cell being the combination of a pure delay element and a lumped circuit representing the transmission line losses. Compared with passive rational macromodeling, the Lie product macromodel is capable of efficiently simulating long, low-loss MTL's while preserving passivity. In this paper, we build on the results of and use transmission line theory to derive a new time-domain error criterion for the Lie product macromodel. We also show how this criterion can be used to determine the minimum number of cells needed in the macromodel to guarantee that the magnitude of the time-domain error is below a given engineering tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信