用于超宽带光电探测器的纳米结构外延石墨烯(会议报告)

A. Fatimy, Luke St. Marie, A. Nath, B. Kong, A. Boyd, R. Myers-Ward, K. Daniels, M. M. Jadidi, T. Murphy, D. K. Gaskill, P. Barbara
{"title":"用于超宽带光电探测器的纳米结构外延石墨烯(会议报告)","authors":"A. Fatimy, Luke St. Marie, A. Nath, B. Kong, A. Boyd, R. Myers-Ward, K. Daniels, M. M. Jadidi, T. Murphy, D. K. Gaskill, P. Barbara","doi":"10.1117/12.2321313","DOIUrl":null,"url":null,"abstract":"Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. \n\n\n[1] El Fatimy, A. et al. , \"Epitaxial graphene quantum dots for high-performance terahertz bolometers,\" Nature Nanotechnology 11, 335-338 (2016).\n\n[2] El Fatimy, A. et al. , \"Ultra-broadband photodetectors based on epitaxial graphene quantum dots\" Nanophotonics (2018).","PeriodicalId":170381,"journal":{"name":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured epitaxial graphene for ultra-broadband optoelectronic detectors (Conference Presentation)\",\"authors\":\"A. Fatimy, Luke St. Marie, A. Nath, B. Kong, A. Boyd, R. Myers-Ward, K. Daniels, M. M. Jadidi, T. Murphy, D. K. Gaskill, P. Barbara\",\"doi\":\"10.1117/12.2321313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. \\n\\n\\n[1] El Fatimy, A. et al. , \\\"Epitaxial graphene quantum dots for high-performance terahertz bolometers,\\\" Nature Nanotechnology 11, 335-338 (2016).\\n\\n[2] El Fatimy, A. et al. , \\\"Ultra-broadband photodetectors based on epitaxial graphene quantum dots\\\" Nanophotonics (2018).\",\"PeriodicalId\":170381,\"journal\":{\"name\":\"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2321313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2321313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原子薄材料,如半金属石墨烯和半导体过渡金属二硫族化合物(TMDs),由于其直接带隙(单层厚度)和可观的光吸收,是超薄光电器件的理想平台。对于基于半导体tmd的器件,光探测是通过光激发带隙以上的载流子来实现的。对于无间隙石墨烯,由于其电子热容量小,电子-声子耦合弱,因此光吸收导致电子温度大幅升高,适合用于热电子探测器。在这里,我们表明,通过纳米结构的石墨烯成量子点,我们可以利用量子约束来实现热电子辐射检测。石墨烯量子点是由外延石墨烯在碳化硅上制成的,其点直径从30 nm到700 nm不等。纳米结构极大地增加了电阻的温度依赖性,产生了具有非凡性能的探测器(响应率为1 × 10^(10) V W^(−1)和电噪声等效功率,在2.5 K时为~ 2 × 10^(−16)W Hz^(−1/2))。我们将讨论电荷载流子的动力学,即热电子冷却,如何影响器件工作及其功率依赖性。这些探测器工作在非常宽的光谱范围内,从太赫兹到电信到紫外线辐射[2],其设计很容易扩展到探测器阵列。[1] El Fatimy, A.等,“高性能太赫兹辐射热计的外延石墨烯量子点”,自然纳米技术11,335-338 (2016).El Fatimy, A. et al.,“基于外延石墨烯量子点的超宽带光电探测器”纳米光子学(2018)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructured epitaxial graphene for ultra-broadband optoelectronic detectors (Conference Presentation)
Atomically thin materials like semimetallic graphene and semiconducting transition metal dichalcogenides (TMDs) are an ideal platform for ultra-thin optoelectronic devices due to their direct bandgap (for monolayer thickness) and their considerable light absorption. For devices based on semiconducting TMDs, light detection occurs by optical excitation of charge carriers above the bandgap. For gapless graphene, light absorption causes a large increase in electron temperature, because of its small electronic heat capacity and weak electron-phonon coupling, making it suitable for hot-electron detectors. Here we show that, by nanostructuring graphene into quantum dots, we can exploit quantum confinement to achieve hot-electron bolometric detection. The graphene quantum dots are patterned from epitaxial graphene on SiC, with dot diameter ranging from 30 nm to 700 nm [1]. Nanostructuring greatly increases the temperature dependence of the electrical resistance, yielding detectors with extraordinary performance (responsivities of 1 × 10^(10) V W^(−1) and electrical noise-equivalent power, ∼2 × 10^(−16) W Hz^(−1/2) at 2.5 K). We will discuss how the dynamics of the charge carriers, namely the hot-electron cooling, affects the device operation and its power dependence. These detectors work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation [2], with a design that is easily scalable for detector arrays. [1] El Fatimy, A. et al. , "Epitaxial graphene quantum dots for high-performance terahertz bolometers," Nature Nanotechnology 11, 335-338 (2016). [2] El Fatimy, A. et al. , "Ultra-broadband photodetectors based on epitaxial graphene quantum dots" Nanophotonics (2018).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信