具有攻击的延迟记忆神经网络的方差约束H∞状态估计算法设计:一种自适应事件触发方法

Yan Gao, Jun Hu, Huijun Yu, Chaoqing Jia
{"title":"具有攻击的延迟记忆神经网络的方差约束H∞状态估计算法设计:一种自适应事件触发方法","authors":"Yan Gao, Jun Hu, Huijun Yu, Chaoqing Jia","doi":"10.1109/CCIS57298.2022.10016333","DOIUrl":null,"url":null,"abstract":"This paper studies the algorithm design of variance-constrained $H_{\\infty}$ state estimation problem for delayed memristive neural networks with adaptive event-triggered mechanism. The denial-of-service attacks are modeled by a series of random variables obeying the Bernoulli distribution with known probability. In addition, the adaptive event-triggered mechanism is introduced into the sensor-to-estimator to avoid unnecessary resource consumption. Our purpose is to construct a finite-horizon state estimation algorithm, and sufficient condition is obtained for the estimation error system satisfying the $H_{\\infty}$ performance requirement and the error variance boundedness. Finally, a numerical example is used to illustrate the feasibility of the presented $H_{\\infty}$ state estimation algorithm.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Variance-Constrained H∞ State Estimation Algorithm for Delayed Memristive Neural Networks with Attacks: An Adaptive Event-Triggered Approach\",\"authors\":\"Yan Gao, Jun Hu, Huijun Yu, Chaoqing Jia\",\"doi\":\"10.1109/CCIS57298.2022.10016333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the algorithm design of variance-constrained $H_{\\\\infty}$ state estimation problem for delayed memristive neural networks with adaptive event-triggered mechanism. The denial-of-service attacks are modeled by a series of random variables obeying the Bernoulli distribution with known probability. In addition, the adaptive event-triggered mechanism is introduced into the sensor-to-estimator to avoid unnecessary resource consumption. Our purpose is to construct a finite-horizon state estimation algorithm, and sufficient condition is obtained for the estimation error system satisfying the $H_{\\\\infty}$ performance requirement and the error variance boundedness. Finally, a numerical example is used to illustrate the feasibility of the presented $H_{\\\\infty}$ state estimation algorithm.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS57298.2022.10016333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS57298.2022.10016333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有自适应事件触发机制的延迟记忆神经网络的方差约束$H_{\infty}$状态估计问题的算法设计。拒绝服务攻击是由一系列具有已知概率服从伯努利分布的随机变量来建模的。此外,在传感器到估计器中引入了自适应事件触发机制,避免了不必要的资源消耗。构造了一种有限视界状态估计算法,得到了估计误差系统满足$H_{\infty}$性能要求和误差方差有界性的充分条件。最后,通过数值算例说明了$H_{\infty}$状态估计算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Variance-Constrained H∞ State Estimation Algorithm for Delayed Memristive Neural Networks with Attacks: An Adaptive Event-Triggered Approach
This paper studies the algorithm design of variance-constrained $H_{\infty}$ state estimation problem for delayed memristive neural networks with adaptive event-triggered mechanism. The denial-of-service attacks are modeled by a series of random variables obeying the Bernoulli distribution with known probability. In addition, the adaptive event-triggered mechanism is introduced into the sensor-to-estimator to avoid unnecessary resource consumption. Our purpose is to construct a finite-horizon state estimation algorithm, and sufficient condition is obtained for the estimation error system satisfying the $H_{\infty}$ performance requirement and the error variance boundedness. Finally, a numerical example is used to illustrate the feasibility of the presented $H_{\infty}$ state estimation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信