动态网络中社区发现的差异度量

Khawla Asmi, D. Lotfi, M. El Marraki
{"title":"动态网络中社区发现的差异度量","authors":"Khawla Asmi, D. Lotfi, M. El Marraki","doi":"10.1109/ICOA49421.2020.9094497","DOIUrl":null,"url":null,"abstract":"The problem of tracking the evolution of communities in dynamic networks represents one of the most recent challenging issues in the community detection field. The most of community detection approaches in a static network suffer from the instability of results. In this paper, we study the evolution of communities over time using an algorithm based on a dissimilarity measure. The main advantage of this algorithm is its automatic selection of communities with high quality in a linear execution time. Experiments on two synthetic datasets and Enron real dataset show the very good performance of the proposed algorithm when compared to DYNMOGA algorithm.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissimilarity measure for community discovery in dynamic networks\",\"authors\":\"Khawla Asmi, D. Lotfi, M. El Marraki\",\"doi\":\"10.1109/ICOA49421.2020.9094497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of tracking the evolution of communities in dynamic networks represents one of the most recent challenging issues in the community detection field. The most of community detection approaches in a static network suffer from the instability of results. In this paper, we study the evolution of communities over time using an algorithm based on a dissimilarity measure. The main advantage of this algorithm is its automatic selection of communities with high quality in a linear execution time. Experiments on two synthetic datasets and Enron real dataset show the very good performance of the proposed algorithm when compared to DYNMOGA algorithm.\",\"PeriodicalId\":253361,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA49421.2020.9094497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态网络中社区演变的跟踪问题是社区检测领域最新的挑战之一。在静态网络中,大多数社区检测方法都存在结果不稳定的问题。在本文中,我们使用基于不相似度量的算法来研究群落随时间的演变。该算法的主要优点是在线性执行时间内自动选择高质量的社区。在两个合成数据集和安然真实数据集上的实验表明,与DYNMOGA算法相比,该算法具有很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissimilarity measure for community discovery in dynamic networks
The problem of tracking the evolution of communities in dynamic networks represents one of the most recent challenging issues in the community detection field. The most of community detection approaches in a static network suffer from the instability of results. In this paper, we study the evolution of communities over time using an algorithm based on a dissimilarity measure. The main advantage of this algorithm is its automatic selection of communities with high quality in a linear execution time. Experiments on two synthetic datasets and Enron real dataset show the very good performance of the proposed algorithm when compared to DYNMOGA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信