基于数据挖掘的入侵检测系统

Zhan Jiuhua
{"title":"基于数据挖掘的入侵检测系统","authors":"Zhan Jiuhua","doi":"10.1109/WKDD.2008.12","DOIUrl":null,"url":null,"abstract":"Analyzed recent IDS models, the development of IDS (Intrusion Detection System), and the current and gives a brief introduction to DM (Data Mining) technology. Presented a framework of IDS based on data mining for resolving the current problems IDS is facing. The system that performs anomaly detection can detect intrusions known and unknown, reduce omissions and misstatements, improve accuracy and speed of intrusion detection and has good adaptive capacity and scalability.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Intrusion Detection System Based on Data Mining\",\"authors\":\"Zhan Jiuhua\",\"doi\":\"10.1109/WKDD.2008.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzed recent IDS models, the development of IDS (Intrusion Detection System), and the current and gives a brief introduction to DM (Data Mining) technology. Presented a framework of IDS based on data mining for resolving the current problems IDS is facing. The system that performs anomaly detection can detect intrusions known and unknown, reduce omissions and misstatements, improve accuracy and speed of intrusion detection and has good adaptive capacity and scalability.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

分析了最近的入侵检测模型,入侵检测系统(IDS)的发展,并对当前的数据挖掘(DM)技术进行了简要介绍。针对当前入侵检测面临的问题,提出了一种基于数据挖掘的入侵检测框架。进行异常检测的系统可以检测已知和未知的入侵,减少遗漏和误报,提高入侵检测的准确性和速度,具有良好的自适应能力和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion Detection System Based on Data Mining
Analyzed recent IDS models, the development of IDS (Intrusion Detection System), and the current and gives a brief introduction to DM (Data Mining) technology. Presented a framework of IDS based on data mining for resolving the current problems IDS is facing. The system that performs anomaly detection can detect intrusions known and unknown, reduce omissions and misstatements, improve accuracy and speed of intrusion detection and has good adaptive capacity and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信