4G移动通信系统线性天线阵列的合成

E. Schlosser, M. Heckler, C. Lucatel, Mauricio Sperandio, Renato B. Machado
{"title":"4G移动通信系统线性天线阵列的合成","authors":"E. Schlosser, M. Heckler, C. Lucatel, Mauricio Sperandio, Renato B. Machado","doi":"10.1109/IMOC.2013.6646430","DOIUrl":null,"url":null,"abstract":"This paper presents the application of optimization methods for the synthesis of a linear array to operate in the frequency range of 4G technology in Brazil. The desired pattern shall exhibit squared-cosecant shape, so as to provide uniform distribution of power inside the base station cell and to reduce co-channel interference. Such an array is well suited to operate as a radio base station of mobile communications systems. The synthesis is performed by a combination of optimization methods: the genetic algorithm, which is used for the initial global search, and the sequential quadratic programming, which is applied for local refinement of the solution. This approach allows faster convergence than using only one kind of optimization method. The technique is demonstrated for a linear array of isotropic elements and, subsequently, for an array of E-shaped microstrip antennas.","PeriodicalId":395359,"journal":{"name":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Synthesis of linear antenna array for 4G mobile communication systems\",\"authors\":\"E. Schlosser, M. Heckler, C. Lucatel, Mauricio Sperandio, Renato B. Machado\",\"doi\":\"10.1109/IMOC.2013.6646430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of optimization methods for the synthesis of a linear array to operate in the frequency range of 4G technology in Brazil. The desired pattern shall exhibit squared-cosecant shape, so as to provide uniform distribution of power inside the base station cell and to reduce co-channel interference. Such an array is well suited to operate as a radio base station of mobile communications systems. The synthesis is performed by a combination of optimization methods: the genetic algorithm, which is used for the initial global search, and the sequential quadratic programming, which is applied for local refinement of the solution. This approach allows faster convergence than using only one kind of optimization method. The technique is demonstrated for a linear array of isotropic elements and, subsequently, for an array of E-shaped microstrip antennas.\",\"PeriodicalId\":395359,\"journal\":{\"name\":\"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2013.6646430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2013.6646430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了在巴西4G技术频率范围内运行的线性阵列合成优化方法的应用。所期望的图案应呈现平方余割形状,以便在基站小区内提供均匀的功率分布,并减少同信道干扰。这种阵列非常适合作为移动通信系统的无线电基站运行。综合采用遗传算法和序列二次规划两种优化方法进行优化,遗传算法用于初始全局搜索,序列二次规划用于局部求精。这种方法比只使用一种优化方法收敛速度更快。该技术演示了各向同性元件的线性阵列,随后,用于e形微带天线阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of linear antenna array for 4G mobile communication systems
This paper presents the application of optimization methods for the synthesis of a linear array to operate in the frequency range of 4G technology in Brazil. The desired pattern shall exhibit squared-cosecant shape, so as to provide uniform distribution of power inside the base station cell and to reduce co-channel interference. Such an array is well suited to operate as a radio base station of mobile communications systems. The synthesis is performed by a combination of optimization methods: the genetic algorithm, which is used for the initial global search, and the sequential quadratic programming, which is applied for local refinement of the solution. This approach allows faster convergence than using only one kind of optimization method. The technique is demonstrated for a linear array of isotropic elements and, subsequently, for an array of E-shaped microstrip antennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信