基于神经网络的动态分支预测

G. Steven, Rubén Anguera, C. Egan, F. Steven, L. Vintan
{"title":"基于神经网络的动态分支预测","authors":"G. Steven, Rubén Anguera, C. Egan, F. Steven, L. Vintan","doi":"10.1109/DSD.2001.952279","DOIUrl":null,"url":null,"abstract":"Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. In contrast, most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. Two neural networks are considered: a lecturing vector quantisation (LVQ) Network and a backpropagation network. We demonstrate that a neural predictor can achieve misprediction rates comparable to conventional two-level adaptive predictors and suggest that neural predictors merit further investigation.","PeriodicalId":285358,"journal":{"name":"Proceedings Euromicro Symposium on Digital Systems Design","volume":"102 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Dynamic branch prediction using neural networks\",\"authors\":\"G. Steven, Rubén Anguera, C. Egan, F. Steven, L. Vintan\",\"doi\":\"10.1109/DSD.2001.952279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. In contrast, most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. Two neural networks are considered: a lecturing vector quantisation (LVQ) Network and a backpropagation network. We demonstrate that a neural predictor can achieve misprediction rates comparable to conventional two-level adaptive predictors and suggest that neural predictors merit further investigation.\",\"PeriodicalId\":285358,\"journal\":{\"name\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"volume\":\"102 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2001.952279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2001.952279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

高性能处理器中的动态分支预测是发生在许多科学领域的一般时间序列预测问题的一个具体实例。相比之下,大多数分支预测研究都集中在两级自适应分支预测技术上,这是一种非常具体的解决分支预测问题的方法。另一种方法是在其他应用领域和领域寻找解决问题的新方法。本文研究了神经网络在动态分支预测中的应用。研究了两种神经网络:讲课向量量化(LVQ)网络和反向传播网络。我们证明了神经预测器可以达到与传统的两级自适应预测器相当的错误预测率,并建议神经预测器值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic branch prediction using neural networks
Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. In contrast, most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. Two neural networks are considered: a lecturing vector quantisation (LVQ) Network and a backpropagation network. We demonstrate that a neural predictor can achieve misprediction rates comparable to conventional two-level adaptive predictors and suggest that neural predictors merit further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信