释义对的识别

Diego Uribe
{"title":"释义对的识别","authors":"Diego Uribe","doi":"10.1109/CERMA.2008.56","DOIUrl":null,"url":null,"abstract":"Our approach to recognize paraphrasing pairs is to make use of lexical relationships as representations of paraphrases. In this paper, we describe a classification process based on logistic regression as the inference mechanism. In this way, the set of features to be analyzed correspond to dependency trees from semantically equivalent paraphrase pairs. The results of the experimentation conducted show how a model constructed around lexical relationships is a plausible alternative for paraphrasing detection.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recognition of Paraphrasing Pairs\",\"authors\":\"Diego Uribe\",\"doi\":\"10.1109/CERMA.2008.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our approach to recognize paraphrasing pairs is to make use of lexical relationships as representations of paraphrases. In this paper, we describe a classification process based on logistic regression as the inference mechanism. In this way, the set of features to be analyzed correspond to dependency trees from semantically equivalent paraphrase pairs. The results of the experimentation conducted show how a model constructed around lexical relationships is a plausible alternative for paraphrasing detection.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们识别释义对的方法是利用词汇关系作为释义的表征。在本文中,我们描述了一个基于逻辑回归的分类过程作为推理机制。通过这种方式,要分析的特征集对应于来自语义等价释义对的依赖树。实验结果表明,围绕词法关系构建的模型是一种合理的释义检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Paraphrasing Pairs
Our approach to recognize paraphrasing pairs is to make use of lexical relationships as representations of paraphrases. In this paper, we describe a classification process based on logistic regression as the inference mechanism. In this way, the set of features to be analyzed correspond to dependency trees from semantically equivalent paraphrase pairs. The results of the experimentation conducted show how a model constructed around lexical relationships is a plausible alternative for paraphrasing detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信