基于红火果板的LAGO协作新数据采集系统

L. H. Arnaldi, D. Cazar, M. Audelo, I. Sidelnik
{"title":"基于红火果板的LAGO协作新数据采集系统","authors":"L. H. Arnaldi, D. Cazar, M. Audelo, I. Sidelnik","doi":"10.1109/CAE48787.2020.9046374","DOIUrl":null,"url":null,"abstract":"The present work describes the results obtained in the development of the new Data Acquisition System (DAQ) that will be used by the Latin American Giant Observatory (LAGO) Collaboration. According to the requirements of the Water Cherenkov Detectors (WCD) used in LAGO, the new system must be capable of recording fast pulses (∼ns) from a photomultiplier (PMT), control the high voltage level applied to it, in addition to monitoring the atmospheric conditions in which the data were taken. Some figures of merit are shown, indicating the performance of the new system working with a WCD. The DAQ is based on a commercial board plus a custom-made interface board. This implementation includes scalers, sub-scalers, an automatic baseline correction algorithm, pressure & temperature sensing, geolocalization, an external trigger and the capability to set and monitor the high voltage applied to the PMT. The flexibility in the design of the system allows to adapt it to different particle detector technologies, such as silicon photomultipliers, resistive plate chambers and scintillators. Preliminary results prove the validity, reliability and high performance of the system.","PeriodicalId":278190,"journal":{"name":"2020 Argentine Conference on Electronics (CAE)","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The new data acquisition system of the LAGO Collaboration based on the Redpitaya board\",\"authors\":\"L. H. Arnaldi, D. Cazar, M. Audelo, I. Sidelnik\",\"doi\":\"10.1109/CAE48787.2020.9046374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work describes the results obtained in the development of the new Data Acquisition System (DAQ) that will be used by the Latin American Giant Observatory (LAGO) Collaboration. According to the requirements of the Water Cherenkov Detectors (WCD) used in LAGO, the new system must be capable of recording fast pulses (∼ns) from a photomultiplier (PMT), control the high voltage level applied to it, in addition to monitoring the atmospheric conditions in which the data were taken. Some figures of merit are shown, indicating the performance of the new system working with a WCD. The DAQ is based on a commercial board plus a custom-made interface board. This implementation includes scalers, sub-scalers, an automatic baseline correction algorithm, pressure & temperature sensing, geolocalization, an external trigger and the capability to set and monitor the high voltage applied to the PMT. The flexibility in the design of the system allows to adapt it to different particle detector technologies, such as silicon photomultipliers, resistive plate chambers and scintillators. Preliminary results prove the validity, reliability and high performance of the system.\",\"PeriodicalId\":278190,\"journal\":{\"name\":\"2020 Argentine Conference on Electronics (CAE)\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Argentine Conference on Electronics (CAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAE48787.2020.9046374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Argentine Conference on Electronics (CAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAE48787.2020.9046374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前的工作描述了在开发新的数据采集系统(DAQ)中获得的结果,该系统将被拉丁美洲巨人天文台(LAGO)合作使用。根据LAGO中使用的水切伦科夫探测器(WCD)的要求,新系统必须能够记录来自光电倍增管(PMT)的快速脉冲(~ ns),控制施加到它的高电压水平,除了监测数据采集的大气条件外。给出了一些性能指标,表明了新系统与WCD一起工作的性能。DAQ是基于一个商业板加上一个定制的接口板。该实现包括缩放器、子缩放器、自动基线校正算法、压力和温度传感、地理定位、外部触发器以及设置和监控施加到PMT的高压的能力。该系统设计的灵活性允许它适应不同的粒子探测器技术,如硅光电倍增管、电阻板室和闪烁体。初步结果证明了该系统的有效性、可靠性和高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The new data acquisition system of the LAGO Collaboration based on the Redpitaya board
The present work describes the results obtained in the development of the new Data Acquisition System (DAQ) that will be used by the Latin American Giant Observatory (LAGO) Collaboration. According to the requirements of the Water Cherenkov Detectors (WCD) used in LAGO, the new system must be capable of recording fast pulses (∼ns) from a photomultiplier (PMT), control the high voltage level applied to it, in addition to monitoring the atmospheric conditions in which the data were taken. Some figures of merit are shown, indicating the performance of the new system working with a WCD. The DAQ is based on a commercial board plus a custom-made interface board. This implementation includes scalers, sub-scalers, an automatic baseline correction algorithm, pressure & temperature sensing, geolocalization, an external trigger and the capability to set and monitor the high voltage applied to the PMT. The flexibility in the design of the system allows to adapt it to different particle detector technologies, such as silicon photomultipliers, resistive plate chambers and scintillators. Preliminary results prove the validity, reliability and high performance of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信