改进Bernstein型算子的近似阶数

Mustafa K. Shehab, Amal K. Hassan
{"title":"改进Bernstein型算子的近似阶数","authors":"Mustafa K. Shehab, Amal K. Hassan","doi":"10.56714/bjrs.48.2.4","DOIUrl":null,"url":null,"abstract":"In this study, we present a generalization of the well-known Bernstein operators based on an odd positive integer r denoted by K_(n,r) (f;x), first, we begin by studying the simultaneous approximation where we prove that the operator K_(n,r)^((s) ) (f;x) convergence to the function f^((s) ) (x) then we introduce and prove the Voronovskaja-type asymptotic formula when (r=3) giving us the order of approximation O(n^(-2) ) which is better than the order of the classical Bernstein operators O(n^(-1) ) followed by the error theorem and at the end, we give a numerical example to show the error of a test function and its first derivative taking different values of r.","PeriodicalId":377834,"journal":{"name":"Basrah Researches Sciences","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improve the approximation order of Bernstein type operators\",\"authors\":\"Mustafa K. Shehab, Amal K. Hassan\",\"doi\":\"10.56714/bjrs.48.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a generalization of the well-known Bernstein operators based on an odd positive integer r denoted by K_(n,r) (f;x), first, we begin by studying the simultaneous approximation where we prove that the operator K_(n,r)^((s) ) (f;x) convergence to the function f^((s) ) (x) then we introduce and prove the Voronovskaja-type asymptotic formula when (r=3) giving us the order of approximation O(n^(-2) ) which is better than the order of the classical Bernstein operators O(n^(-1) ) followed by the error theorem and at the end, we give a numerical example to show the error of a test function and its first derivative taking different values of r.\",\"PeriodicalId\":377834,\"journal\":{\"name\":\"Basrah Researches Sciences\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah Researches Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56714/bjrs.48.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah Researches Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56714/bjrs.48.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们基于奇正整数r (K_(n,r) (f;x))给出了著名的Bernstein算子的推广,首先,我们首先研究了同时逼近,证明了算子K_(n,r)^(s)) (f;x)收敛于函数f^(s)) (x),然后引入并证明了voronovskaja型渐近公式,当(r=3)时给出了近似的阶数O(n^(-2))它比经典Bernstein算子的阶数O(n^(-1))好,并给出了误差定理,最后,我们给出一个数值例子来说明一个测试函数及其一阶导数取不同r值时的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improve the approximation order of Bernstein type operators
In this study, we present a generalization of the well-known Bernstein operators based on an odd positive integer r denoted by K_(n,r) (f;x), first, we begin by studying the simultaneous approximation where we prove that the operator K_(n,r)^((s) ) (f;x) convergence to the function f^((s) ) (x) then we introduce and prove the Voronovskaja-type asymptotic formula when (r=3) giving us the order of approximation O(n^(-2) ) which is better than the order of the classical Bernstein operators O(n^(-1) ) followed by the error theorem and at the end, we give a numerical example to show the error of a test function and its first derivative taking different values of r.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信