需要科学的浮点运算

Lawrence A. Liddiard
{"title":"需要科学的浮点运算","authors":"Lawrence A. Liddiard","doi":"10.1109/ARITH.1978.6155786","DOIUrl":null,"url":null,"abstract":"Previous papers in computer arithmetic have shown that correct rounded floating point with good arithmetic properties can be attained using guard digits and careful algorithms on the floating point fractions. This paper combines that body of knowledge with proposed exponent forms that are closed with respect to inversion and detection and recovery of exponent under and over flow. In addition radix 2 is shown to be the only base radix meeting minimal variation of precision, a condition necessary for the safe use of floating point. An effort is made to establish objective criteria in answer to the question; \"What is the best division of the computer word into exponent and fraction parts?\". Combining the previous results allows a required scientific floating point arithmetic to be portrayed and compared with available arithmetics on current computers.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Required scientific floating point arithmetic\",\"authors\":\"Lawrence A. Liddiard\",\"doi\":\"10.1109/ARITH.1978.6155786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous papers in computer arithmetic have shown that correct rounded floating point with good arithmetic properties can be attained using guard digits and careful algorithms on the floating point fractions. This paper combines that body of knowledge with proposed exponent forms that are closed with respect to inversion and detection and recovery of exponent under and over flow. In addition radix 2 is shown to be the only base radix meeting minimal variation of precision, a condition necessary for the safe use of floating point. An effort is made to establish objective criteria in answer to the question; \\\"What is the best division of the computer word into exponent and fraction parts?\\\". Combining the previous results allows a required scientific floating point arithmetic to be portrayed and compared with available arithmetics on current computers.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以前的计算机算法论文表明,在浮点分数上使用保护数字和谨慎的算法可以得到具有良好算术性能的正确的舍入浮点数。本文将该知识体系与所提出的指数形式相结合,这些指数形式在流量下和流量上的指数反演、检测和恢复方面是封闭的。此外,基数2是唯一满足最小精度变化的基数,这是安全使用浮点数所必需的条件。为了回答这个问题,正在努力建立客观的标准;“把计算机单词分成指数部分和分数部分的最佳方法是什么?”结合前面的结果,可以描述所需的科学浮点算法,并与当前计算机上可用的算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Required scientific floating point arithmetic
Previous papers in computer arithmetic have shown that correct rounded floating point with good arithmetic properties can be attained using guard digits and careful algorithms on the floating point fractions. This paper combines that body of knowledge with proposed exponent forms that are closed with respect to inversion and detection and recovery of exponent under and over flow. In addition radix 2 is shown to be the only base radix meeting minimal variation of precision, a condition necessary for the safe use of floating point. An effort is made to establish objective criteria in answer to the question; "What is the best division of the computer word into exponent and fraction parts?". Combining the previous results allows a required scientific floating point arithmetic to be portrayed and compared with available arithmetics on current computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信