不同策略下权值初始化的自组织映射性能比较分析

H. Haripriya, R. Devisree, D. Pooja, Prema Nedungadi
{"title":"不同策略下权值初始化的自组织映射性能比较分析","authors":"H. Haripriya, R. Devisree, D. Pooja, Prema Nedungadi","doi":"10.1109/ICACC.2015.75","DOIUrl":null,"url":null,"abstract":"Self Organizing Maps perform clustering of data based on unsupervised learning. It is of concern that initialization of the weight vector contributes significantly to the performance of SOM and since real world datasets being high-dimensional, the complexity of SOM tend to increase tremendously leading to increased time consumption as well. Our work focuses on the analysis of different weight initialization strategies and various dimensionality reduction measures with the intent to make SOM flexible for handling high-dimensional datasets. We use two methods of comparison, one on projected space and another before projection. The datasets used are real world datasets taken from UCI repository.","PeriodicalId":368544,"journal":{"name":"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comparative Performance Analysis of Self Organizing Maps on Weight Initializations Using different Strategies\",\"authors\":\"H. Haripriya, R. Devisree, D. Pooja, Prema Nedungadi\",\"doi\":\"10.1109/ICACC.2015.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self Organizing Maps perform clustering of data based on unsupervised learning. It is of concern that initialization of the weight vector contributes significantly to the performance of SOM and since real world datasets being high-dimensional, the complexity of SOM tend to increase tremendously leading to increased time consumption as well. Our work focuses on the analysis of different weight initialization strategies and various dimensionality reduction measures with the intent to make SOM flexible for handling high-dimensional datasets. We use two methods of comparison, one on projected space and another before projection. The datasets used are real world datasets taken from UCI repository.\",\"PeriodicalId\":368544,\"journal\":{\"name\":\"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACC.2015.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2015.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自组织地图基于无监督学习对数据进行聚类。值得关注的是,权重向量的初始化对SOM的性能有很大的贡献,而且由于现实世界的数据集是高维的,SOM的复杂性往往会大大增加,导致时间消耗也会增加。我们的工作重点是分析不同的权重初始化策略和各种降维措施,目的是使SOM灵活地处理高维数据集。我们使用两种方法进行比较,一种是在投影空间上进行比较,另一种是在投影前进行比较。使用的数据集是从UCI存储库中获取的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Performance Analysis of Self Organizing Maps on Weight Initializations Using different Strategies
Self Organizing Maps perform clustering of data based on unsupervised learning. It is of concern that initialization of the weight vector contributes significantly to the performance of SOM and since real world datasets being high-dimensional, the complexity of SOM tend to increase tremendously leading to increased time consumption as well. Our work focuses on the analysis of different weight initialization strategies and various dimensionality reduction measures with the intent to make SOM flexible for handling high-dimensional datasets. We use two methods of comparison, one on projected space and another before projection. The datasets used are real world datasets taken from UCI repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信