{"title":"在线职业社交网络中不可靠信息检测方法研究——以LinkedIn Mobile为例","authors":"Nan Jing, Mengdi Li, Su Zhang","doi":"10.4018/IJHCR.2015100103","DOIUrl":null,"url":null,"abstract":"Professional social network gives companies a platform to post hiring information and locate professional talents. However, the professional network has a great number of users who generate huge amount of information every day, which makes it difficult for the hiring company to distinguish reliability of users' information and evaluate their professional abilities. In this context, this article bases on LinkedIn Mobile as the online professional social network and proposes a research approach to effectively identify unreliable information and evaluate users' abilities. First, the authors look for relevant social network profiles for a cross-site check. Second, on a single professional social networking they site, the authors check the similarity between the user's background and his connections' backgrounds, to detect any possible unreliable information. Third, they propose an algorithm to rank the trustfulness of users' recommendations based on a PageRank algorithm that was traditionally to evaluate the importance of web pages.","PeriodicalId":265963,"journal":{"name":"Int. J. Handheld Comput. Res.","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Research Approach to Detect Unreliable Information in Online Professional Social Networks: Using LinkedIn Mobile as an Example\",\"authors\":\"Nan Jing, Mengdi Li, Su Zhang\",\"doi\":\"10.4018/IJHCR.2015100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Professional social network gives companies a platform to post hiring information and locate professional talents. However, the professional network has a great number of users who generate huge amount of information every day, which makes it difficult for the hiring company to distinguish reliability of users' information and evaluate their professional abilities. In this context, this article bases on LinkedIn Mobile as the online professional social network and proposes a research approach to effectively identify unreliable information and evaluate users' abilities. First, the authors look for relevant social network profiles for a cross-site check. Second, on a single professional social networking they site, the authors check the similarity between the user's background and his connections' backgrounds, to detect any possible unreliable information. Third, they propose an algorithm to rank the trustfulness of users' recommendations based on a PageRank algorithm that was traditionally to evaluate the importance of web pages.\",\"PeriodicalId\":265963,\"journal\":{\"name\":\"Int. J. Handheld Comput. Res.\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Handheld Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJHCR.2015100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Handheld Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHCR.2015100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Research Approach to Detect Unreliable Information in Online Professional Social Networks: Using LinkedIn Mobile as an Example
Professional social network gives companies a platform to post hiring information and locate professional talents. However, the professional network has a great number of users who generate huge amount of information every day, which makes it difficult for the hiring company to distinguish reliability of users' information and evaluate their professional abilities. In this context, this article bases on LinkedIn Mobile as the online professional social network and proposes a research approach to effectively identify unreliable information and evaluate users' abilities. First, the authors look for relevant social network profiles for a cross-site check. Second, on a single professional social networking they site, the authors check the similarity between the user's background and his connections' backgrounds, to detect any possible unreliable information. Third, they propose an algorithm to rank the trustfulness of users' recommendations based on a PageRank algorithm that was traditionally to evaluate the importance of web pages.