基于表面肌电信号的深度学习人机交互静态力估计

Se Jin Kim, W. Chung, Keehoon Kim
{"title":"基于表面肌电信号的深度学习人机交互静态力估计","authors":"Se Jin Kim, W. Chung, Keehoon Kim","doi":"10.1109/UR49135.2020.9144869","DOIUrl":null,"url":null,"abstract":"Human-robot interaction (HRI) is a rapidly growing research area and it occurs in many applications including human-robot collaboration, human power augmentation, and rehabilitation robotics. As it is hard to exactly calculate intended motion trajectory, generally, interaction control is applied in HRI instead of pure motion control. To implement the interaction control, force information is necessary and force sensor is widely used in force feedback. However, force sensor has some limitations as 1) it is subject to breakdown, 2) it imposes additional volume and weight to the system, and 3) its applicable places are constrained. In this situation, force estimation can be a good solution. However, if force in static situation should be measured, using position and velocity is not sufficient because they are not influenced by the exerted force anymore. Therefore, we proposed sEMG-based static force estimation using deep learning. sEMG provides a useful information about human-exerting force because it reflects the human intention. Also, to extract the complex relationship between sEMG and force, deep learning approach is used. Experimental results show that when force with maximal value of 63.2 N is exerted, average force estimation error was 3.67 N. Also, the proposed method shows that force onset timing of estimated force is faster than force sensor signal. This result would be advantageous for faster human intention recognition.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"sEMG-based Static Force Estimation for Human-Robot Interaction using Deep Learning\",\"authors\":\"Se Jin Kim, W. Chung, Keehoon Kim\",\"doi\":\"10.1109/UR49135.2020.9144869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-robot interaction (HRI) is a rapidly growing research area and it occurs in many applications including human-robot collaboration, human power augmentation, and rehabilitation robotics. As it is hard to exactly calculate intended motion trajectory, generally, interaction control is applied in HRI instead of pure motion control. To implement the interaction control, force information is necessary and force sensor is widely used in force feedback. However, force sensor has some limitations as 1) it is subject to breakdown, 2) it imposes additional volume and weight to the system, and 3) its applicable places are constrained. In this situation, force estimation can be a good solution. However, if force in static situation should be measured, using position and velocity is not sufficient because they are not influenced by the exerted force anymore. Therefore, we proposed sEMG-based static force estimation using deep learning. sEMG provides a useful information about human-exerting force because it reflects the human intention. Also, to extract the complex relationship between sEMG and force, deep learning approach is used. Experimental results show that when force with maximal value of 63.2 N is exerted, average force estimation error was 3.67 N. Also, the proposed method shows that force onset timing of estimated force is faster than force sensor signal. This result would be advantageous for faster human intention recognition.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人机交互(HRI)是一个快速发展的研究领域,在人机协作、人力增强和康复机器人等领域有着广泛的应用。由于预期运动轨迹难以精确计算,在HRI中一般采用交互控制而不是单纯的运动控制。为了实现交互控制,力信息是必不可少的,力传感器广泛应用于力反馈。然而,力传感器有一些局限性,1)它容易损坏,2)它会给系统带来额外的体积和重量,3)它的适用场所受到限制。在这种情况下,力估计是一个很好的解决方案。但是,如果要测量静态状态下的力,使用位置和速度是不够的,因为它们不再受施加的力的影响。因此,我们提出了使用深度学习的基于表面肌电信号的静态力估计。肌电图提供了关于人类施加力的有用信息,因为它反映了人类的意图。此外,为了提取表面肌电信号与力之间的复杂关系,采用了深度学习方法。实验结果表明,当施加最大力为63.2 N时,该方法的平均估计误差为3.67 N,并且估计力的开始时间比力传感器信号快。这一结果将有利于更快地进行人类意图识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
sEMG-based Static Force Estimation for Human-Robot Interaction using Deep Learning
Human-robot interaction (HRI) is a rapidly growing research area and it occurs in many applications including human-robot collaboration, human power augmentation, and rehabilitation robotics. As it is hard to exactly calculate intended motion trajectory, generally, interaction control is applied in HRI instead of pure motion control. To implement the interaction control, force information is necessary and force sensor is widely used in force feedback. However, force sensor has some limitations as 1) it is subject to breakdown, 2) it imposes additional volume and weight to the system, and 3) its applicable places are constrained. In this situation, force estimation can be a good solution. However, if force in static situation should be measured, using position and velocity is not sufficient because they are not influenced by the exerted force anymore. Therefore, we proposed sEMG-based static force estimation using deep learning. sEMG provides a useful information about human-exerting force because it reflects the human intention. Also, to extract the complex relationship between sEMG and force, deep learning approach is used. Experimental results show that when force with maximal value of 63.2 N is exerted, average force estimation error was 3.67 N. Also, the proposed method shows that force onset timing of estimated force is faster than force sensor signal. This result would be advantageous for faster human intention recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信